Asymptotically Periodic and Bifurcation Points in Fractional Difference Maps

被引:0
作者
Edelman, Mark [1 ,2 ]
机构
[1] Yeshiva Univ, Stern Coll Women, 245 Lexington Ave, New York, NY 10016 USA
[2] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
来源
FRACTAL AND FRACTIONAL | 2025年 / 9卷 / 04期
关键词
fractional difference maps; periodic points; bifurcation points; 05.45.Pq; 45.10.Hj; LOGISTIC MAP; STABILITY; CHAOS; SYSTEMS;
D O I
10.3390/fractalfract9040231; 10.3390/fractalfract9040231
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The first step in investigating fractional difference maps, which do not have periodic points except fixed points, is to find asymptotically periodic and bifurcation points and draw asymptotic bifurcation diagrams. Recently derived equations that allow calculations of asymptotically periodic and bifurcation points contain coefficients defined as slowly converging infinite sums. In this paper, I derive analytic expressions for coefficients of the equations that allow calculations of asymptotically periodic and bifurcation points in fractional difference maps.
引用
收藏
页数:13
相关论文
共 42 条
[1]   On the asymptotic stability of linear system of fractional-order difference equations [J].
Abu-Saris, Raghib ;
Al-Mdallal, Qasem .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (03) :613-629
[2]   Asymptotic properties of discrete linear fractional equations [J].
Anh, P. T. ;
Babiarz, A. ;
Czornik, A. ;
Niezabitowski, M. ;
Siegmund, S. .
BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2019, 67 (04) :749-759
[3]  
[Anonymous], FEIGENBAUM CONSTANTS
[4]  
Benjamin A.T., 2010, MATH MAG, V83, P370, DOI [DOI 10.4169/002557010X529860, 10.4169/002557010x529860]
[5]   ON EXPLICIT STABILITY CONDITIONS FOR A LINEAR FRACTIONAL DIFFERENCE SYSTEM [J].
Cermak, Jan ;
Gyori, Istvan ;
Nechvatal, Ludek .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) :651-672
[6]   Stability regions for linear fractional differential systems and their discretizations [J].
Cermak, Jan ;
Kisela, Tomas ;
Nechvatal, Ludek .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (12) :7012-7022
[7]   Existence Results for Nonlinear Fractional Difference Equation [J].
Chen, Fulai ;
Luo, Xiannan ;
Zhou, Yong .
ADVANCES IN DIFFERENCE EQUATIONS, 2011,
[8]  
CVITANOVIC P, 1989, UNIVERSALITY CHAOS
[9]   Controllable multistability of fractional-order memristive coupled chaotic map and its application in medical image encryption [J].
Ding, Dawei ;
Wang, Jin ;
Wang, Mouyuan ;
Yang, Zongli ;
Wang, Wei ;
Niu, Yan ;
Xu, Xinyue .
EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (10)
[10]  
Edelman M, 2015, The interdisciplinary journal of Discontinuity Nonlinearity and Complexity, V4, P391, DOI [10.5890/dnc.2015.11.003, DOI 10.5890/DNC.2015.11.003, 10.5890/DNC.2015.11.003]