Systematic review and epistemic meta-analysis to advance binomial AI-radiomics integration for predicting high-grade glioma progression and enhancing patient management

被引:0
作者
Chilaca-Rosas, Maria Fatima [1 ]
Contreras-Aguilar, Manuel Tadeo [1 ]
Pallach-Loose, Federico [2 ]
Altamirano-Bustamante, Nelly F. [3 ]
Salazar-Calderon, David Rafael [1 ]
Revilla-Monsalve, Cristina [2 ]
Heredia-Gutierrez, Juan Carlos [1 ]
Conde-Castro, Benjamin [1 ]
Medrano-Guzman, Rafael [1 ]
Altamirano-Bustamante, Myriam M. [2 ]
机构
[1] Inst Mexicano Seguro Social, Hosp Oncol, Ctr Med Nacl Siglo XXI, Mexico City 06720, Mexico
[2] Inst Mexicano Seguro Social, Ctr Med Nacl Siglo XXI, Unidad Invest Enfermedades Metab, Mexico City 06720, Mexico
[3] Inst Nacl Pediat, Serv Endocrinol, Mexico City 04530, Mexico
关键词
Artificial Intelligence; Glioblastomas; Machine learning; Radiomics; Artificial Intelligence Radiomics Interfield (AIRI); Segmentation; Progression; Prognosis; Overall survival (OS); Progression-free survival (PFS); Roadmap; Mind map; CLINICAL DECISION-ANALYSIS; MEDICAL LITERATURE; USERS GUIDES; SURVIVAL; FEATURES;
D O I
10.1038/s41598-025-98058-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-grade gliomas, particularly glioblastoma (MeSH:Glioblastoma), are among the most aggressive and lethal central nervous system tumors, necessitating advanced diagnostic and prognostic strategies. This systematic review and epistemic meta-analysis explore the integration of Artificial Intelligence (AI) and Radiomics Inter-field (AIRI) to enhance predictive modeling for tumor progression. A comprehensive literature search identified 19 high-quality studies, which were analyzed to evaluate radiomic features and machine learning models in predicting overall survival (OS) and progression-free survival (PFS). Key findings highlight the predictive strength of specific MRI-derived radiomic features such as log-filter and Gabor textures and the superior performance of Support Vector Machines (SVM) and Random Forest (RF) models, achieving high accuracy and AUC scores (e.g., 98% AUC and 98.7% accuracy for OS). This research demonstrates the current state of the AIRI field and shows that current articles report their results with different performance indicators and metrics, making outcomes heterogenous and hard to integrate knowledge. Additionally, it was explored that today some articles use biased methodologies. This study proposes a structured AIRI development roadmap and guidelines, to avoid bias and make results comparable, emphasizing standardized feature extraction and AI model training to improve reproducibility across clinical settings. By advancing precision medicine, AIRI integration has the potential to refine clinical decision-making and enhance patient outcomes.
引用
收藏
页数:27
相关论文
共 32 条
[1]   FLAIR lesion segmentation: Application in patients with brain tumors and acute ischemic stroke [J].
Artzi, Moran ;
Aizenstein, Orna ;
Jonas-Kimchi, Tali ;
Myers, Vicki ;
Hallevi, Hen ;
Ben Bashat, Dafna .
EUROPEAN JOURNAL OF RADIOLOGY, 2013, 82 (09) :1512-1518
[2]   Advanced Imaging Techniques for Newly Diagnosed and Recurrent Gliomas [J].
Carrete, Luis R. ;
Young, Jacob S. ;
Cha, Soonmee .
FRONTIERS IN NEUROSCIENCE, 2022, 16
[3]   Prediction of survival with multi-scale radiomic analysis in glioblastoma patients [J].
Chaddad, Ahmad ;
Sabri, Siham ;
Niazi, Tamim ;
Abdulkarim, Bassam .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2018, 56 (12) :2287-2300
[4]   A quantitative study of shape descriptors from glioblastoma multiforme phenotypes for predicting survival outcome [J].
Chaddad, Ahmad ;
Desrosiers, Christian ;
Hassan, Lama ;
Tanougast, Camel .
BRITISH JOURNAL OF RADIOLOGY, 2016, 89 (1068)
[5]   Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab [J].
Chang, Ken ;
Zhang, Biqi ;
Guo, Xiaotao ;
Zong, Min ;
Rahman, Rifaquat ;
Sanchez, David ;
Winder, Nicolette ;
Reardon, David A. ;
Zhao, Binsheng ;
Wen, Patrick Y. ;
Huang, Raymond Y. .
NEURO-ONCOLOGY, 2016, 18 (12) :1680-1687
[6]   Diagnostic Performance of Selected MRI-Derived Radiomics Able to Discriminate Progression-Free and Overall Survival in Patients with Midline Glioma and the H3F3AK27M Mutation [J].
Chilaca-Rosas, Maria-Fatima ;
Garcia-Lezama, Melissa ;
Moreno-Jimenez, Sergio ;
Roldan-Valadez, Ernesto .
DIAGNOSTICS, 2023, 13 (05)
[7]   Kurtosis is An MRI Radiomics Feature Predictor of Poor Prognosis in Patients with GBM [J].
de Marco Borges, Pedro Henrique ;
Lizar, Jessica Caroline ;
Correa Faustino, Alexandre Ciuffi ;
Arruda, Gustavo Viani ;
Pavoni, Juliana Fernandes .
BRAZILIAN JOURNAL OF PHYSICS, 2021, 51 (04) :1035-1042
[8]   Machine Learning for Medical Imaging1 [J].
Erickson, Bradley J. ;
Korfiatis, Panagiotis ;
Akkus, Zeynettin ;
Kline, Timothy L. .
RADIOGRAPHICS, 2017, 37 (02) :505-515
[9]   Prediction of Rapid Early Progression and Survival Risk with Pre-Radiation MRI in WHO Grade 4 Glioma Patients [J].
Farzana, Walia ;
Basree, Mustafa M. ;
Diawara, Norou ;
Shboul, Zeina A. ;
Dubey, Sagel ;
Lockhart, Marie M. ;
Hamza, Mohamed ;
Palmer, Joshua D. ;
Iftekharuddin, Khan M. .
CANCERS, 2023, 15 (18)
[10]  
Jacobs Andreas H, 2005, NeuroRx, V2, P333, DOI 10.1007/BF03206675