Construction, Lax integrability, bilinearization and multi-soliton solutions of a defocusing/focusing nonlocal extended modified Korteweg-de Vries equation

被引:0
作者
Liu, Hao-Dong
Tian, Bo [1 ]
Gao, Xiao-Tian
Shan, Hong-Wen
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Key Lab Math & Informat Networks, Minist Educ, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Defocusing/focusing nonlocal extended; modified Korteweg-de Vries equation; Lax integrability; Bilinear forms; Multi-soliton solutions; Improved Hirota bilinear method;
D O I
10.1016/j.physleta.2025.130528
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Certain integrable nonlocal modified Korteweg-de Vries (mKdV)-type equations have been recently studied, which can be used on the atmospheric science and oceanic dynamics. In this study, a defocusing/focusing nonlocal extended mKdV equation is constructed via the Ablowitz-Kaup-Newell-Segur (AKNS) procedure. We also discuss the Lax integrability of that equation. By virtue of the improved Hirota bilinear method, some mutli-soliton solutions and bilinear forms are obtained. Profiles of certain multi-soliton solutions are shown graphically: (1) certain periodic solitons of that equation are shown; (2) certain quasi-periodic solitons of that equation are presented.
引用
收藏
页数:5
相关论文
共 40 条
[1]  
Ablowitz M.J., 1981, SOLITONS INVERSE SCA, V4, DOI [10.1137/1.9781611970883, DOI 10.1137/1.9781611970883]
[2]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[3]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[4]   Integrable discrete PT symmetric model [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW E, 2014, 90 (03)
[5]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[6]   NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 31 (02) :125-127
[7]   New local and nonlocal soliton solutions of a nonlocal reverse space-time mKdV equation using improved Hirota bilinear method [J].
Ahmad, Shabir ;
Saifullah, Sayed ;
Khan, Arshad ;
Inc, Mustafa .
PHYSICS LETTERS A, 2022, 450
[8]  
Bender C.M., 2019, PT Symmetry in Quantum and Classical Physics, DOI DOI 10.1142/Q0178
[9]   Must a Hamiltonian be Hermitian? [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
AMERICAN JOURNAL OF PHYSICS, 2003, 71 (11) :1095-1102
[10]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246