Invariant tori for the fractional nonlinear Schrödinger equation with nonlinearity periodically depending on spatial variable

被引:0
作者
Liu, Jieyu [1 ,2 ]
Zhang, Jing [1 ,2 ]
机构
[1] East China Normal Univ, Sch Math Sci, Key Lab Math & Engn Applicat, Minist Educ, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-periodic solution; KAM theorem; Reversible system; Unbounded perturbation; WAVE-EQUATIONS; HAMILTONIAN PERTURBATIONS; SCHRODINGER-EQUATION; CANTOR MANIFOLDS; KAM THEOREM; EXISTENCE;
D O I
10.1007/s13540-025-00409-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we focus on a type of fractional nonlinear Schr & ouml;dinger equation with odd periodic boundary conditions, where the nonlinearity periodically depending on spatial variable x. By an abstract KAM (Kolmogorov-Arnold-Moser) theorem for infinite dimensional reversible systems with unbounded perturbation, we obtain that there exists a lot of smooth quasi-periodic solutions with small amplitude for fractional nonlinear Schr & ouml;dinger equations.
引用
收藏
页码:1564 / 1610
页数:47
相关论文
共 40 条
[1]   KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Montalto, Riccardo .
MATHEMATISCHE ANNALEN, 2014, 359 (1-2) :471-536
[2]  
Bambusi D, 2013, DYNAM PART DIFFER EQ, V10, P171
[3]   KAM for Reversible Derivative Wave Equations [J].
Berti, Massimiliano ;
Biasco, Luca ;
Procesi, Michela .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 212 (03) :905-955
[4]  
Berti M, 2013, ANN SCI ECOLE NORM S, V46, P301
[5]   Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential [J].
Berti, Massimiliano ;
Bolle, Philippe .
NONLINEARITY, 2012, 25 (09) :2579-2613
[6]   Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrodinger equations [J].
Bourgain, J .
ANNALS OF MATHEMATICS, 1998, 148 (02) :363-439
[7]   KAM tori for 1D nonlinear wave equations with periodic boundary conditions [J].
Chierchia, L ;
You, JG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (02) :497-525
[8]   NEWTONS METHOD AND PERIODIC-SOLUTIONS OF NONLINEAR-WAVE EQUATIONS [J].
CRAIG, W ;
WAYNE, CE .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (11) :1409-1498
[9]   SPACE-TIME FRACTIONAL SCHRODINGER EQUATION WITH COMPOSITE TIME FRACTIONAL DERIVATIVE [J].
Dubbeldam, Johan L. A. ;
Tomovski, Zivorad ;
Sandev, Trifce .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (05) :1179-1200
[10]   KAM for the nonlinear beam equation [J].
Eliasson, L. Hakan ;
Grebert, Benoit ;
Kuksin, Sergei B. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (06) :1588-1715