Implementation of Multiply Accumulate Operation and Convolutional Neural Network Based on Ferroelectric Tunnel Junction Memristors

被引:0
作者
Cheng, Ziming [1 ,2 ]
Wang, He [1 ,2 ]
Guan, Zeyu [1 ,2 ]
Zhu, Zhengxu [1 ,2 ]
Shen, Shengchun [1 ,2 ]
Yin, Yuewei [1 ,2 ]
Li, Xiaoguang [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Dept Phys, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Key Lab Strongly Coupled Quantum Matter Phys, Hefei 230026, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
ferroelectric tunnel junction; memristor; artificialsynapse; multiply accumulation; in-memory computing; convolutional neural network; CLASSIFICATION; RECOGNITION; PLASTICITY;
D O I
10.1021/acsami.5c00740
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the era of big data, traditional Von Neumann computers suffer from inefficiencies in terms of energy consumption and speed associated with data transfer between storage and processing. In-memory computing using ferroelectric tunnel junction (FTJ) memristors offers a potential solution to this challenge. Here, Hf0.5Zr0.5O2-based FTJs on a silicon substrate are fabricated, which demonstrates 32 conductance states (5-bit), low cycle-to-cycle variation (1.6%) and highly linear (nonlinearity <1) conductance manipulation. Based on an FTJ array with multiple FTJ devices, a custom-designed board with a field programmable gate array is utilized to perform accurate multiply accumulate operations and for image processing as various convolution operators. Notably, using FTJ devices as a convolutional layer, the convolutional neural network achieves a high accuracy of 92.5% for handwritten digit recognition, and exhibits orders of magnitude better energy efficiency compared to traditional CPU and GPU implementations. These findings highlight the promising potential of FTJs for realizing in-memory computing at the hardware level.
引用
收藏
页码:21440 / 21447
页数:8
相关论文
共 49 条
[21]   Sub-nanosecond memristor based on ferroelectric tunnel junction [J].
Ma, Chao ;
Luo, Zhen ;
Huang, Weichuan ;
Zhao, Letian ;
Chen, Qiaoling ;
Lin, Yue ;
Liu, Xiang ;
Chen, Zhiwei ;
Liu, Chuanchuan ;
Sun, Haoyang ;
Jin, Xi ;
Yin, Yuewei ;
Li, Xiaoguang .
NATURE COMMUNICATIONS, 2020, 11 (01)
[22]   Versatile stochastic dot product circuits based on nonvolatile memories for high performance neurocomputing and neurooptimization [J].
Mahmoodi, M. R. ;
Prezioso, M. ;
Strukov, D. B. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[23]   Low-Power Artificial Neural Network Perceptron Based on Monolayer MoS2 [J].
Marega, Guilherme Migliato ;
Wang, Zhenyu ;
Paliy, Maksym ;
Giusi, Gino ;
Strangio, Sebastiano ;
Castiglione, Francesco ;
Callegari, Christian ;
Tripathi, Mukesh ;
Radenovic, Aleksandra ;
Iannaccone, Giuseppe ;
Kis, Andras .
ACS NANO, 2022, 16 (03) :3684-3694
[24]   Temporal data classification and forecasting using a memristor-based reservoir computing system [J].
Moon, John ;
Ma, Wen ;
Shin, Jong Hoon ;
Cai, Fuxi ;
Du, Chao ;
Lee, Seung Hwan ;
Lu, Wei D. .
NATURE ELECTRONICS, 2019, 2 (10) :480-487
[25]   TiOx-Based RRAM Synapse With 64-Levels of Conductance and Symmetric Conductance Change by Adopting a Hybrid Pulse Scheme for Neuromorphic Computing [J].
Park, Jaesung ;
Kwak, Myunghoon ;
Moon, Kibong ;
Woo, Jiyong ;
Lee, Dongwook ;
Hwang, Hyunsang .
IEEE ELECTRON DEVICE LETTERS, 2016, 37 (12) :1559-1562
[26]   Implementation of Convolutional Neural Networks in Memristor Crossbar Arrays with Binary Activation and Weight Quantization [J].
Park, Jinwoo ;
Kim, Sungjoon ;
Song, Min Suk ;
Youn, Sangwook ;
Kim, Kyuree ;
Kim, Tae-Hyeon ;
Kim, Hyungjin .
ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (01) :1054-1065
[27]   Electronic system with memristive synapses for pattern recognition [J].
Park, Sangsu ;
Chu, Myonglae ;
Kim, Jongin ;
Noh, Jinwoo ;
Jeon, Moongu ;
Lee, Byoung Hun ;
Hwang, Hyunsang ;
Lee, Boreom ;
Lee, Byung-geun .
SCIENTIFIC REPORTS, 2015, 5
[28]   Computational subunits in thin dendrites of pyramidal cells [J].
Polsky, A ;
Mel, BW ;
Schiller, J .
NATURE NEUROSCIENCE, 2004, 7 (06) :621-627
[29]   Computational Failure Analysis of In-Memory RRAM Architecture for Pattern Classification CNN Circuits [J].
Prabhu, Nagaraj Lakshmana ;
Raghavan, Nagarajan .
IEEE ACCESS, 2021, 9 :168093-168106
[30]   Neuromorphic Computing Based on Emerging Memory Technologies [J].
Rajendran, Bipin ;
Alibart, Fabien .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2016, 6 (02) :198-211