Implementation of Multiply Accumulate Operation and Convolutional Neural Network Based on Ferroelectric Tunnel Junction Memristors

被引:0
作者
Cheng, Ziming [1 ,2 ]
Wang, He [1 ,2 ]
Guan, Zeyu [1 ,2 ]
Zhu, Zhengxu [1 ,2 ]
Shen, Shengchun [1 ,2 ]
Yin, Yuewei [1 ,2 ]
Li, Xiaoguang [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Dept Phys, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Key Lab Strongly Coupled Quantum Matter Phys, Hefei 230026, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
ferroelectric tunnel junction; memristor; artificialsynapse; multiply accumulation; in-memory computing; convolutional neural network; CLASSIFICATION; RECOGNITION; PLASTICITY;
D O I
10.1021/acsami.5c00740
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the era of big data, traditional Von Neumann computers suffer from inefficiencies in terms of energy consumption and speed associated with data transfer between storage and processing. In-memory computing using ferroelectric tunnel junction (FTJ) memristors offers a potential solution to this challenge. Here, Hf0.5Zr0.5O2-based FTJs on a silicon substrate are fabricated, which demonstrates 32 conductance states (5-bit), low cycle-to-cycle variation (1.6%) and highly linear (nonlinearity <1) conductance manipulation. Based on an FTJ array with multiple FTJ devices, a custom-designed board with a field programmable gate array is utilized to perform accurate multiply accumulate operations and for image processing as various convolution operators. Notably, using FTJ devices as a convolutional layer, the convolutional neural network achieves a high accuracy of 92.5% for handwritten digit recognition, and exhibits orders of magnitude better energy efficiency compared to traditional CPU and GPU implementations. These findings highlight the promising potential of FTJs for realizing in-memory computing at the hardware level.
引用
收藏
页码:21440 / 21447
页数:8
相关论文
共 49 条
[1]   Neuromorphic Learning and Recognition With One-Transistor-One-Resistor Synapses and Bistable Metal Oxide RRAM [J].
Ambrogio, Stefano ;
Balatti, Simone ;
Milo, Valerio ;
Carboni, Roberto ;
Wang, Zhong-Qiang ;
Calderoni, Alessandro ;
Ramaswamy, Nirmal ;
Ielmini, Daniele .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (04) :1508-1515
[2]   Low-power linear computation using nonlinear ferroelectric tunnel junction memristors [J].
Berdan, Radu ;
Marukame, Takao ;
Ota, Kensuke ;
Yamaguchi, Marina ;
Saitoh, Masumi ;
Fujii, Shosuke ;
Deguchi, Jun ;
Nishi, Yoshifumi .
NATURE ELECTRONICS, 2020, 3 (05) :259-266
[3]   Learning through ferroelectric domain dynamics in solid-state synapses [J].
Boyn, Soeren ;
Grollier, Julie ;
Lecerf, Gwendal ;
Xu, Bin ;
Locatelli, Nicolas ;
Fusil, Stephane ;
Girod, Stephanie ;
Carretero, Cecile ;
Garcia, Karin ;
Xavier, Stephane ;
Tomas, Jean ;
Bellaiche, Laurent ;
Bibes, Manuel ;
Barthelemy, Agnes ;
Saighi, Sylvain ;
Garcia, Vincent .
NATURE COMMUNICATIONS, 2017, 8
[4]  
Chanthbouala A, 2012, NAT MATER, V11, P860, DOI [10.1038/NMAT3415, 10.1038/nmat3415]
[5]   Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junction synapses for hardware neural network applications [J].
Chen, Lin ;
Wang, Tian-Yu ;
Dai, Ya-Wei ;
Cha, Ming-Yang ;
Zhu, Hao ;
Sun, Qing-Qing ;
Ding, Shi-Jin ;
Zhou, Peng ;
Chua, Leon ;
Zhang, David Wei .
NANOSCALE, 2018, 10 (33) :15826-15833
[6]   Recent Progress in Transistor-Based Optoelectronic Synapses: From Neuromorphic Computing to Artificial Sensory System [J].
Cho, Sung Woon ;
Kwon, Sung Min ;
Kim, Yong-Hoon ;
Park, Sung Kyu .
ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (06)
[7]   A Ferrite Synaptic Transistor with Topotactic Transformation [J].
Ge, Chen ;
Liu, Chang-xiang ;
Zhou, Qing-li ;
Zhang, Qing-hua ;
Du, Jian-yu ;
Li, Jian-kun ;
Wang, Can ;
Gu, Lin ;
Yang, Guo-zhen ;
Jin, Kui-juan .
ADVANCED MATERIALS, 2019, 31 (19)
[8]   Physical chemistry of the TiN/Hf0.5Zr0.5O2 interface [J].
Hamouda, W. ;
Pancotti, A. ;
Lubin, C. ;
Tortech, L. ;
Richter, C. ;
Mikolajick, T. ;
Schroeder, U. ;
Barrett, N. .
JOURNAL OF APPLIED PHYSICS, 2020, 127 (06)
[9]   Memristor-Based Analog Computation and Neural Network Classification with a Dot Product Engine [J].
Hu, Miao ;
Graves, Catherine E. ;
Li, Can ;
Li, Yunning ;
Ge, Ning ;
Montgomery, Eric ;
Davila, Noraica ;
Jiang, Hao ;
Williams, R. Stanley ;
Yang, J. Joshua ;
Xia, Qiangfei ;
Strachan, John Paul .
ADVANCED MATERIALS, 2018, 30 (09)
[10]   Autonomous Artificial Olfactory Sensor Systems with Homeostasis Recovery via a Seamless Neuromorphic Architecture [J].
Jang, Young-Woo ;
Kim, Jaehyun ;
Shin, Jaewon ;
Jo, Jeong-Wan ;
Shin, Jong Wook ;
Kim, Yong-Hoon ;
Cho, Sung Woon ;
Park, Sung Kyu .
ADVANCED MATERIALS, 2024, 36 (29)