The increasing global demand for renewable energy has driven research into sustainable bioethanol production from lignocellulosic biomass. This study evaluates the effect of gamma-irradiation doses (0, 250, 500, 750, and 1000 kGy) on cellulose degradation in corn stover (stalk, husk, and cob), combined with 2 % NaOH pretreatment to enhance cellulose accessibility. Maximum glucose concentrations of 204.38 mM (stalk), 287.68 mM (husk), and 309.65 mM (cob) were achieved at 1000 kGy, showing increases of 45.6 %, 22.3 %, and 22.4 %, respectively, compared to non-irradiated controls. Notably, gamma-irradiation at 250 kGy resulted in a statistically significant 8 % increase in glucose content in corn cob. In contrast, higher doses were required to achieve significant enhancements in other biomass, with 500 kGy yielding a 36 % increase in corn stalk and an 18 % increase in corn husk. Surface morphological analysis revealed structural disruption in irradiated samples, facilitating enzymatic hydrolysis. These findings highlight gamma-irradiation as an effective alternative to conventional pretreatments, with the potential for enhancing bioethanol production efficiency.