Hydrothermally synthesized Mn3O4 catalyst for water-splitting activity

被引:0
作者
Bhosale, Tushar T. [1 ]
Shembade, Umesh V. [1 ]
Patil, Meenal D. [1 ]
Chougale, Nishigandha B. [1 ]
Magadum, Mayuri G. [1 ]
Dhas, Suprimkumar D. [2 ]
Moholkar, Annasaheb V. [1 ]
机构
[1] Shivaji Univ, Dept Phys, Thin Film Nanomat Lab, Kolhapur, India
[2] Kyung Hee Univ, Inst Wearable Convergence Elect, Dept Elect Engn, Yongin, South Korea
关键词
catalyst; electrocatalyst; energy conversion; hydrothermal method; microstructure; Mn3O4; water splitting; OXYGEN EVOLUTION REACTION; OXIDATION CATALYST; FACILE SYNTHESIS; BIPOLAR PLATES; NI; NANOPARTICLES; ELECTROCATALYST; MORPHOLOGY; MEMBRANE; OXIDES;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The current work describes a straightforward hydrothermal method for the preparation of manganese oxide microflowers (Mn3O4 MFs) for water-splitting activity. The main goal of this research is to develop Mn3O4 MFs as a viable and environmentally acceptable electrode material for the oxygen evolution reaction (OER) mechanism. From the structural study, the tetragonal crystal structure of the Mn3O4 MFs has been confirmed, and the uniformly distributed microflowers-like structures are evidenced by the scanning electron microscope analysis. In addition, the electrocatalytic activity (OER mechanism) of the prepared Mn3O4 electrode has been assessed using cyclic voltammetry test and linear sweep voltammetry techniques, respectively. However, the Mn3O4 MFs electrode demonstrated good catalytic activities with better electrochemical stability for the OER mechanism. The resultant electrode material reports superior properties in terms of the overpotential (236 mV), Tafel slope (162 mV dec(-1)), and electrochemical active surface area (37.5 cm(2)) with promising stability over the 5 h of continuous treatment in the aqueous 1 M KOH electrolyte at a current density of 25 mA cm(-2), respectively. Therefore, the above findings demonstrate that Mn3O4 MFs are a potential candidate for OER catalytic activity.
引用
收藏
页码:53 / 59
页数:7
相关论文
共 33 条
[1]   Nanocrystalline cobalt tungstate thin films prepared by SILAR method for electrocatalytic oxygen evolution reaction [J].
Bagwade, P. P. ;
Malavekar, D. B. ;
Magdum, V. V. ;
Khot, S. D. ;
Nikam, R. P. ;
Patil, D. J. ;
Patil, U. M. ;
Lokhande, C. D. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (23) :8465-8477
[2]   Electrocatalytic evaluation of Co3O4 and NiCo2O4 rosettes-like hierarchical spinel as bifunctional materials for oxygen evolution (OER) and reduction (ORR) reactions in alkaline media [J].
Bejar, Jose ;
Alvarez-Contreras, Lorena ;
Ledesma-Garcia, J. ;
Arjona, Noe ;
Arriaga, L. G. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 847
[3]   Controlled synthesis of Mn3O4 nanoparticles in ionic liquids [J].
Bussamara, Roberta ;
Melo, Wellington W. M. ;
Scholten, Jackson D. ;
Migowski, Pedro ;
Marin, Graciane ;
Zapata, Maximiliano J. M. ;
Machado, Giovanna ;
Teixeira, Sergio R. ;
Novak, Miguel A. ;
Dupont, Jairton .
DALTON TRANSACTIONS, 2013, 42 (40) :14473-14479
[4]   Non-Precious Electrodes for Practical Alkaline Water Electrolysis [J].
Colli, Alejandro N. ;
Girault, Hubert H. ;
Battistel, Alberto .
MATERIALS, 2019, 12 (08)
[5]   Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges [J].
Deng, Xiaohui ;
Tueysuez, Harun .
ACS CATALYSIS, 2014, 4 (10) :3701-3714
[6]   Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells [J].
Dihrab, Salwan S. ;
Sopian, K. ;
Alghoul, M. A. ;
Sulaiman, M. Y. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2009, 13 (6-7) :1663-1668
[7]   Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers [J].
Gago, A. S. ;
Ansar, S. A. ;
Saruhan, B. ;
Schulz, U. ;
Lettenmeier, P. ;
Canas, N. A. ;
Gazdzicki, P. ;
Morawietz, T. ;
Hiesgen, R. ;
Arnold, J. ;
Friedrich, K. A. .
JOURNAL OF POWER SOURCES, 2016, 307 :815-825
[8]   Amorphous cobalt-iron hydroxides as high-efficiency oxygen-evolution catalysts based on a facile electrospinning process [J].
Guo, Zhenguo ;
Ye, Wen ;
Fang, Xiaoyu ;
Wan, Jian ;
Ye, Yaoyao ;
Dong, Yingying ;
Cao, Ding ;
Yan, Dongpeng .
INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (03) :687-693
[9]   Co oxide nanostructures for electrocatalytic water-oxidation: effects of dimensionality and related properties [J].
Gupta, S. ;
Yadav, A. ;
Bhartiya, S. ;
Singh, M. K. ;
Miotello, A. ;
Sarkar, A. ;
Patel, N. .
NANOSCALE, 2018, 10 (18) :8806-8819
[10]   Facet-evolution growth of Mn3O4@CoxMn3-xO4 electrocatalysts on Ni foam towards efficient oxygen evolution reaction [J].
Hu, Congling ;
Zhang, Lei ;
Huang, Zhiqi ;
Zhu, Wenjin ;
Zhao, Zhi-Jian ;
Gong, Jinlong .
JOURNAL OF CATALYSIS, 2019, 369 :105-110