A Spectral Isoperimetric Inequality on the n-Sphere for the Robin-Laplacian with Negative Boundary Parameter

被引:0
|
作者
P. Acampora [1 ]
A. Celentano [1 ]
E. Cristoforoni [2 ]
C. Nitsch [1 ]
C. Trombetti [1 ]
机构
[1] Università degli studi di Napoli Federico II,Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
[2] Scuola Superiore Meridionale,Mathematical and Physical Sciences for Advanced Materials and Technologies
来源
The Journal of Geometric Analysis | 2025年 / 35卷 / 6期
关键词
Robin Laplacian; Negative boundary parameter; Isoperimetric inequalities for eigenvalues; Curvature measures; Convex sets; 35P15; 58J50; 52A55;
D O I
10.1007/s12220-025-02007-2
中图分类号
学科分类号
摘要
For every given β<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta <0$$\end{document}, we study the problem of maximizing the first Robin eigenvalue of the Laplacian λβ(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _\beta (\Omega )$$\end{document} among convex (not necessarily smooth) sets Ω⊂Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {S}}^{n}$$\end{document} with fixed perimeter. In particular, denoting by σn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _n$$\end{document} the perimeter of the n-dimensional hemisphere, we show that for fixed perimeters P<σn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P<\sigma _n$$\end{document}, geodesic balls maximize the eigenvalue. Moreover, we prove a quantitative stability result for this isoperimetric inequality in terms of volume difference between Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} and the ball D of the same perimeter.
引用
收藏
相关论文
共 31 条