Deep Learning with an Attention Mechanism for Enhancing Automated Modified Total Sharp/van der Heijde Scoring of Hand X-ray Images in Rheumatoid Arthritis

被引:0
作者
Lien, Chung-Yueh [1 ]
Wang, Hao-Jan [1 ,2 ]
Lu, Cheng-Kai [3 ]
Hsu, Tzu-Hsuan [1 ]
Chu, Woei-Chyn [2 ]
Lai, Chien-Chih [4 ,5 ,6 ]
机构
[1] Natl Taipei Univ Nursing & Hlth Sci, Dept Informat Management, Taipei, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Dept Biomed Engn, Taipei, Taiwan
[3] Natl Taiwan Normal Univ, Dept Elect Engn, Taipei, Taiwan
[4] Taipei Vet Gen Hosp, Dept Med, Div Allergy Immunol & Rheumatol, Taipei, Taiwan
[5] Natl Yang Ming Chao Tung Univ, Inst Clin Med, Taipei, Taiwan
[6] Natl Yang Ming Chiao Tung Univ, Fac Med, Taipei, Taiwan
关键词
Artificial intelligence; Joint space narrowing; Modified Total Sharp/van der Heijde Scoring; Rheumatoid arthritis; Attention mechanism;
D O I
10.1007/s40846-025-00947-2
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
PurposeRheumatoid arthritis (RA) is a chronic autoimmune disease whose accurate diagnosis relies on clinical symptoms, serological markers, and imaging studies, particularly X-ray evaluations of joint damage. A widely adopted metric for evaluating RA severity in hand and foot radiographs, the modified Total Sharp Score, quantifies joint erosion and joint space narrowing. However, manual scoring is labor-intensive, time-consuming, and prone to variability, limiting its reliability and consistency in clinical practice.MethodsThis study introduces a deep learning-based approach augmented with an attention mechanism to automate joint localization and damage classification in hand X-rays of patients with RA. The You Only Look Once v7 model was used for joint localization, incorporating performance enhancements via window-level transformation and the Distance Intersection over Union algorithm.ResultsThe model achieved a localization accuracy of 99.66% mAP@0.50, significantly enhancing the detection precision. This model outperformed the vision transformer in scenarios involving limited data and small feature regions, achieving an overall classification accuracy of 88%.ConclusionThe proposed method improved feature learning and classification, especially with limited data, and the attention mechanisms significantly enhanced the performance of the RA automatic diagnosis system. Data imbalance was effectively addressed via a modified EfficientNetV2 model with an integrated attention mechanism for joint damage classification.
引用
收藏
页码:298 / 306
页数:9
相关论文
共 24 条
[1]   Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review [J].
Al-Maini, Mustafa ;
Maindarkar, Mahesh ;
Kitas, George D. ;
Khanna, Narendra N. ;
Misra, Durga Prasanna ;
Johri, Amer M. ;
Mantella, Laura ;
Agarwal, Vikas ;
Sharma, Aman ;
Singh, Inder M. ;
Tsoulfas, George ;
Laird, John R. ;
Faa, Gavino ;
Teji, Jagjit ;
Turk, Monika ;
Viskovic, Klaudija ;
Ruzsa, Zoltan ;
Mavrogeni, Sophie ;
Rathore, Vijay ;
Miner, Martin ;
Kalra, Manudeep K. ;
Isenovic, Esma R. ;
Saba, Luca ;
Fouda, Mostafa M. ;
Suri, Jasjit S. .
RHEUMATOLOGY INTERNATIONAL, 2023, 43 (11) :1965-1982
[2]   Self-Ensembling Vision Transformer (SEViT) for Robust Medical Image Classification [J].
Almalik, Faris ;
Yaqub, Mohammad ;
Nandakumar, Karthik .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT III, 2022, 13433 :376-386
[3]   The global prevalence of rheumatoid arthritis: a meta-analysis based on a systematic review [J].
Almutairi, Khalid ;
Nossent, Johannes ;
Preen, David ;
Keen, Helen ;
Inderjeeth, Charles .
RHEUMATOLOGY INTERNATIONAL, 2021, 41 (05) :863-877
[4]  
Chaturvedi N., 2021, PREPRINT, DOI DOI 10.48550/ARXIV.2102.06982
[5]   Rheumatoid Arthritis - Common Origins, Divergent Mechanisms [J].
Gravallese, Ellen M. ;
Firestein, Gary S. .
NEW ENGLAND JOURNAL OF MEDICINE, 2023, 388 (06) :529-542
[6]   Transformers in medical image analysis [J].
He, Kelei ;
Gan, Chen ;
Li, Zhuoyuan ;
Rekik, Islem ;
Yin, Zihao ;
Ji, Wen ;
Gao, Yang ;
Wang, Qian ;
Zhang, Junfeng ;
Shen, Dinggang .
INTELLIGENT MEDICINE, 2023, 3 (01) :59-78
[7]   Development and validation of a deep-learning model for scoring of radiographic finger joint destruction in rheumatoid arthritis [J].
Hirano, Toru ;
Nishide, Masayuki ;
Nonaka, Naoki ;
Seita, Jun ;
Ebina, Kosuke ;
Sakurada, Kazuhiro ;
Kumanogoh, Atsushi .
RHEUMATOLOGY ADVANCES IN PRACTICE, 2019, 3 (02)
[8]   Development of a scoring model for the Sharp/van der Heijde score using convolutional neural networks and its clinical application [J].
Honda, Suguru ;
Yano, Koichiro ;
Tanaka, Eiichi ;
Ikari, Katsunori ;
Harigai, Masayoshi .
RHEUMATOLOGY, 2023, 62 (06) :2272-2283
[9]   Myopenia is associated with joint damage in rheumatoid arthritis: a cross-sectional study [J].
Lin, Jian-Zi ;
Liang, Jin-Jian ;
Ma, Jian-Da ;
Li, Qian-Hua ;
Mo, Ying-Qian ;
Cheng, Wan-Mei ;
He, Xiao-Ling ;
Li, Nan ;
Cao, Ming-Hui ;
Xu, Dan ;
Dai, Lie .
JOURNAL OF CACHEXIA SARCOPENIA AND MUSCLE, 2019, 10 (02) :355-367
[10]   Rheumatoid Arthritis: The Impact of Mental Health on Disease: A Narrative Review [J].
Lwin, May N. ;
Serhal, Lina ;
Holroyd, Christopher ;
Edwards, Christopher J. .
RHEUMATOLOGY AND THERAPY, 2020, 7 (03) :457-471