Preoperative prediction of WHO/ISUP grade of ccRCC using intratumoral and peritumoral habitat imaging: multicenter study

被引:0
作者
Chen, Zhihui [1 ,2 ]
Zhu, Hongqing [1 ,2 ]
Shu, Hongmin [3 ]
Zhang, Jianbo [1 ,2 ]
Gu, Kangchen [1 ,2 ]
Yao, Wenjun [1 ,2 ]
机构
[1] Anhui Med Univ, Dept Radiol, Affiliated Hosp 2, Hefei, Anhui, Peoples R China
[2] Anhui Med Univ, Med Imaging Res Ctr, Hefei, Anhui, Peoples R China
[3] Anhui Med Univ, Affiliated Hosp 1, Dept Radiol, Hefei, Anhui, Peoples R China
关键词
Clear cell renal cell carcinoma; Computed tomography; Habitat analysis; Radiomics; WHO/ISUP grading; CARCINOMA; SURVIVAL;
D O I
10.1186/s40644-025-00875-z
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
ObjectivesThe World Health Organization/International Society of Urological Pathology (WHO/ISUP) grading of clear cell renal cell carcinoma (ccRCC) is crucial for prognosis and treatment planning. This study aims to predict the grade using intratumoral and peritumoral subregional CT radiomics analysis for better clinical interventions.MethodsData from two hospitals included 513 ccRCC patients, who were divided into training (70%), validation (30%), and an external validation set (testing) of 67 patients. Using ITK-SNAP, two radiologists annotated tumor regions of interest (ROI) and extended surrounding areas by 1 mm, 3 mm, and 5 mm. The K-means clustering algorithm divided the tumor region into three sub-regions, and the Least Absolute Shrinkage and Selection Operator (LASSO) regression identified the most predictive features. Various machine learning models were established, including radiomics models, peritumoral radiomics models, models based on intratumoral heterogeneity (ITH) score, clinical models, and comprehensive models. Predictive ability was evaluated using receiver operating characteristic (ROC) curves, area under the curve (AUC) values, DeLong tests, calibration curves, and decision curves.ResultsThe combined model showed strong predictive power with an AUC of 0.852 (95% CI: 0.725-0.979) on the test data, outperforming individual models. The ITH score model was highly precise, with AUCs of 0.891 (95% CI: 0.854-0.927) in training, 0.877 (95% CI: 0.814-0.941) in validation, and 0.847 (95% CI: 0.725-0.969) in testing, proving its superior predictive ability across datasets.ConclusionA comprehensive model combining Habitat, Peri1mm, and salient clinical features was significantly more accurate in predicting ccRCC pathologic grading.Key pointsQuestion: Characterize tumor heterogeneity to non-invasively predict WHO/ISUP pathological grading preoperatively.Findings: An integrated model combining subregion characterization, peritumoral characteristics, and clinical features can predict ccRCC grade preoperatively.Clinical relevance: Subregion tumor characterization outperforms the single-entity approach. The integrated model, compared with the radiomics model, boosts grading and prognostic accuracy for more targeted clinical actions.Key pointsQuestion: Characterize tumor heterogeneity to non-invasively predict WHO/ISUP pathological grading preoperatively.Findings: An integrated model combining subregion characterization, peritumoral characteristics, and clinical features can predict ccRCC grade preoperatively.Clinical relevance: Subregion tumor characterization outperforms the single-entity approach. The integrated model, compared with the radiomics model, boosts grading and prognostic accuracy for more targeted clinical actions.Key pointsQuestion: Characterize tumor heterogeneity to non-invasively predict WHO/ISUP pathological grading preoperatively.Findings: An integrated model combining subregion characterization, peritumoral characteristics, and clinical features can predict ccRCC grade preoperatively.Clinical relevance: Subregion tumor characterization outperforms the single-entity approach. The integrated model, compared with the radiomics model, boosts grading and prognostic accuracy for more targeted clinical actions.
引用
收藏
页数:13
相关论文
共 33 条
[1]   Radiomics Machine Learning Analysis of Clear Cell Renal Cell Carcinoma for Tumour Grade Prediction Based on Intra-Tumoural Sub-Region Heterogeneity [J].
Alhussaini, Abeer J. ;
Steele, J. Douglas ;
Jawli, Adel ;
Nabi, Ghulam .
CANCERS, 2024, 16 (08)
[2]   Prognostic significance of Fuhrman grade and age for cancer-specific and overall survival in patients with papillary renal cell carcinoma: results of an international multi-institutional study on 2189 patients [J].
Borgmann, H. ;
Musquera, M. ;
Haferkamp, A. ;
Vilaseca, A. ;
Klatte, T. ;
Shariat, S. F. ;
Scavuzzo, A. ;
Jimenez Rios, M. A. ;
Wolff, I. ;
Capitanio, U. ;
Dell'Oglio, P. ;
Krabbe, L. M. ;
Herrmann, E. ;
Ecke, T. ;
Vergho, D. ;
Huck, N. ;
Wagener, N. ;
Pahernik, S. ;
Zastrow, S. ;
Wirth, M. ;
Surcel, C. ;
Mirvald, C. ;
Prochazkova, K. ;
Hutterer, G. ;
Zigeuner, R. ;
Cindolo, L. ;
Hora, M. ;
Stief, C. G. ;
May, M. ;
Brookman-May, S. D. .
WORLD JOURNAL OF UROLOGY, 2017, 35 (12) :1891-1897
[3]   Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer [J].
Braman, Nathaniel ;
Prasanna, Prateek ;
Whitney, Jon ;
Singh, Salendra ;
Beig, Niha ;
Etesami, Maryam ;
Bates, David D. B. ;
Gallagher, Katherine ;
Bloch, B. Nicolas ;
Vulchi, Manasa ;
Turk, Paulette ;
Bera, Kaustav ;
Abraham, Jame ;
Sikov, William M. ;
Somlo, George ;
Harris, Lyndsay N. ;
Gilmore, Hannah ;
Plecha, Donna ;
Varadan, Vinay ;
Madabhushi, Anant .
JAMA NETWORK OPEN, 2019, 2 (04)
[4]   Ontological analyses reveal clinically-significant clear cell renal cell carcinoma subtypes with convergent evolutionary trajectories into an aggressive type [J].
Cai, Qi ;
Christie, Alana ;
Rajaram, Satwik ;
Zhou, Qinbo ;
Araj, Ellen ;
Chintalapati, Suneetha ;
Cadeddu, Jeffrey ;
Margulis, Vitaly ;
Pedrosa, Ivan ;
Rakheja, Dinesh ;
McKay, Renee M. ;
Brugarolas, James ;
Kapur, Payal .
EBIOMEDICINE, 2020, 51
[5]   Integration of deep learning and habitat radiomics for predicting the response to immunotherapy in NSCLC patients [J].
Caii, Weimin ;
Wu, Xiao ;
Guo, Kun ;
Chen, Yongxian ;
Shi, Yubo ;
Chen, Junkai .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2024, 73 (08)
[6]   Delineation of Tumor Habitats based on Dynamic Contrast Enhanced MRI [J].
Chang, Yu-Cherng Channing ;
Ackerstaff, Ellen ;
Tschudi, Yohann ;
Jimenez, Bryan ;
Foltz, Warren ;
Fisher, Carl ;
Lilge, Lothar ;
Cho, HyungJoon ;
Carlin, Sean ;
Gillies, Robert J. ;
Balagurunathan, Yoganand ;
Yechieli, Raphael L. ;
Subhawong, Ty ;
Turkbey, Baris ;
Pollack, Alan ;
Stoyanova, Radka .
SCIENTIFIC REPORTS, 2017, 7
[7]   Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics [J].
Cui, Enming ;
Li, Zhuoyong ;
Ma, Changyi ;
Li, Qing ;
Lei, Yi ;
Lan, Yong ;
Yu, Juan ;
Zhou, Zhipeng ;
Li, Ronggang ;
Long, Wansheng ;
Lin, Fan .
EUROPEAN RADIOLOGY, 2020, 30 (05) :2912-2921
[8]   Clear cell renal cell carcinoma: validation of World Health Organization/International Society of Urological Pathology grading [J].
Dagher, Julien ;
Delahunt, Brett ;
Rioux-Leclercq, Nathalie ;
Egevad, Lars ;
Srigley, John R. ;
Coughlin, Geoffrey ;
Dunglinson, Nigel ;
Gianduzzo, Troy ;
Kua, Boon ;
Malone, Greg ;
Martin, Ben ;
Preston, John ;
Pokorny, Morgan ;
Wood, Simon ;
Yaxley, John ;
Samaratunga, Hemamali .
HISTOPATHOLOGY, 2017, 71 (06) :918-925
[9]   Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up [J].
Escudier, B. ;
Porta, C. ;
Schmidinger, M. ;
Rioux-Leclercq, N. ;
Bex, A. ;
Khoo, V. ;
Grunwald, V. ;
Gillessen, S. ;
Horwich, A. .
ANNALS OF ONCOLOGY, 2019, 30 (05) :706-720
[10]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577