Demo: Soccer Information Retrieval via Natural Queries using SoccerRAG

被引:0
作者
Strand, Aleksander Theo [1 ]
Gautam, Sushant [2 ]
Midoglu, Cise [3 ]
Halvorsen, Pal [4 ]
机构
[1] TET Digital As, OsloMet, Oslo, Norway
[2] SimulaMet, OsloMet, Oslo, Norway
[3] Forzasys, SimulaMet, Oslo, Norway
[4] Forzasys, SimulaMet, OsloMet, Oslo, Norway
来源
2024 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING, CBMI | 2024年
关键词
association football; information retrieval; large language models; natural language processing; sports; UI;
D O I
10.1109/CBMI62980.2024.10859233
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rapid evolution of digital sports media necessitates sophisticated information retrieval systems that can efficiently parse extensive multimodal datasets. This paper demonstrates SoccerRAG, an innovative framework designed to harness the power of Retrieval Augmented Generation (RAG) and Large Language Models (LLMs) to extract soccer-related information through natural language queries. By leveraging a multimodal dataset, SoccerRAG supports dynamic querying and automatic data validation, enhancing user interaction and accessibility to sports archives. We present a novel interactive user interface (UI) based on the Chainlit framework which wraps around the core functionality, and enable users to interact with the SoccerRAG framework in a chatbot-like visual manner.
引用
收藏
页码:362 / 366
页数:5
相关论文
共 11 条
  • [1] Chainlit, 2023, Overview-Chainlit
  • [2] Cheng YH, 2024, Arxiv, DOI [arXiv:2401.03428, 10.48550/ARXIV.2401.03428arXiv]
  • [3] Deliege A., 2021, 2021 IEEE CVF C COMP, P19
  • [4] Giancola S., 2018, 2018 IEEE CVF C COMP, P18
  • [5] LangSmith, 2024, Get started with LangSmith
  • [6] OpenAI, 2023, GPT-4 and GPT-4 Turbo Documentation
  • [7] OpenAI, 2024, Models
  • [8] OpenAI,, 2024, GPT-4
  • [9] OpenAI, 2023, GPT-3.5-Turbo-0125 Model
  • [10] Strand A. T., 2024, SoccerRAG: Multimodal Soccer Information Retrieval via Natural Queries