A first-order augmented Lagrangian method for constrained minimax optimization

被引:0
作者
Lu, Zhaosong [1 ]
Mei, Sanyou [1 ]
机构
[1] Univ Minnesota, Dept Ind & Syst Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Minimax optimization; Augmented Lagrangian method; First-order method; Operation complexity; NONCONVEX; ALGORITHMS; COMPLEXITY;
D O I
10.1007/s10107-024-02163-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we study a class of constrained minimax problems. In particular, we propose a first-order augmented Lagrangian method for solving them, whose subproblems turn out to be a much simpler structured minimax problem and are suitably solved by a first-order method developed in this paper. Under some suitable assumptions, an operation complexity of O(epsilon-4log epsilon-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}(\varepsilon <^>{-4}\log \varepsilon <^>{-1})$$\end{document}, measured by its fundamental operations, is established for the first-order augmented Lagrangian method for finding an epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-KKT solution of the constrained minimax problems.
引用
收藏
页数:42
相关论文
共 63 条
[1]  
Antonakopoulos K., 2021, INT C LEARN REPR
[2]  
Birgin EG, 2014, FUND ALGORITHMS, P1, DOI 10.1137/1.9781611973365
[3]   Complexity and performance of an Augmented Lagrangian algorithm [J].
Birgin, E. G. ;
Martinez, J. M. .
OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (05) :885-920
[4]  
Cesa-Bianchi N., 2006, PREDICTION LEARNING
[5]   Convergence rates in forward-backward splitting [J].
Chen, GHG ;
Rockafellar, RT .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (02) :421-444
[6]   AN AUGMENTED LAGRANGIAN METHOD FOR NON-LIPSCHITZ NONCONVEX PROGRAMMING [J].
Chen, Xiaojun ;
Guo, Lei ;
Lu, Zhaosong ;
Ye, Jane J. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (01) :168-193
[7]  
Chen ZY, 2021, Arxiv, DOI arXiv:2102.04653
[8]  
Clarke F. H., 1983, Optimization and nonsmooth analysis
[9]  
Dai B, 2018, PR MACH LEARN RES, V80
[10]   OPTIMALITY CONDITIONS AND NUMERICAL ALGORITHMS FOR A CLASS OF LINEARLY CONSTRAINED MINIMAX OPTIMIZATION PROBLEMS [J].
Dai, Yu-Hong ;
Wang, Jiani ;
Zhang, Liwei .
SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (03) :2883-2916