On the Magnetic Dirichlet to Neumann Operator on the Disk: Strong Diamagnetism and Strong Magnetic Field Limit

被引:1
作者
Helffer, Bernard [1 ]
Nicoleau, Francois [1 ]
机构
[1] Nantes Univ, Lab Math Jean Leray, UMR 6629, CNRS, B-44000 Nantes, France
关键词
Magnetic field; Dirichlet-to-neumann operator; Diamagnetism; EIGENVALUES;
D O I
10.1007/s12220-025-02009-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inspired by a paper by Chakradhar, Gittins, Habib and Peyerimhoff, we analyze their conjecture that the ground state energy of the magnetic Dirichlet-to-Neumann operator on the disk tends to +infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+\infty $$\end{document} as the magnetic field tends to +infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+\infty $$\end{document}. This is an important step towards the analysis of the curvature effect in the case of general domains in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R<^>2$$\end{document}.
引用
收藏
页数:30
相关论文
共 24 条
[1]  
BOLLEY C, 1993, ANN I H POINCARE-PHY, V58, P189
[2]  
Chakradhar T., 2024, arXiv
[3]  
Colbois B, 2024, Arxiv, DOI arXiv:2403.11336
[4]   Geometric bounds for the magnetic Neumann eigenvalues in the plane [J].
Colbois, Bruno ;
Lena, Corentin ;
Provenzano, Luigi ;
Savo, Alessandro .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 179 :454-497
[5]   Isoperimetric Inequalities for the Magnetic Neumann and Steklov Problems with Aharonov-Bohm Magnetic Potential [J].
Colbois, Bruno ;
Provenzano, Luigi ;
Savo, Alessandro .
JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (11)
[6]   EIGENVALUES VARIATION .1. NEUMANN PROBLEM FOR STURM-LIOUVILLE OPERATORS [J].
DAUGE, M ;
HELFFER, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 104 (02) :243-262
[7]   BOUNDARY EFFECTS IN SUPERCONDUCTORS [J].
DEGENNES, PG .
REVIEWS OF MODERN PHYSICS, 1964, 36 (1P1) :225-+
[8]  
dlmf.nist, NIST Digital Library of Mathematical Functions
[9]   On the third critical field in Ginzburg-Landau theory [J].
Fournais, S. ;
Helffer, B. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 266 (01) :153-196
[10]   Inequalities for the lowest magnetic Neumann eigenvalue [J].
Fournais, S. ;
Helffer, B. .
LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (07) :1683-1700