Deep learning HRNet FCN for blood vessel identification in laparoscopic pancreatic surgery

被引:0
作者
Shi, Jile [1 ]
Cui, Ruohan [1 ]
Wang, Zhihong [1 ]
Yan, Qi [2 ]
Ping, Lu [1 ]
Zhou, Hu [1 ]
Gao, Junyi [1 ]
Fang, Chihua [3 ]
Han, Xianlin [1 ]
Hua, Surong [1 ]
Wu, Wenming [1 ]
机构
[1] Chinese Acad Med Sci, Peking Union Med Coll, Beijing 100730, Peoples R China
[2] Tsinghua Univ, Sch Life Sci, Beijing 100084, Peoples R China
[3] Southern Med Univ, Dept Hepatobiliary Surg 1, Zhujiang Hosp, Guangzhou 510280, Peoples R China
关键词
DISTAL PANCREATECTOMY; BENIGN;
D O I
10.1038/s41746-025-01663-6
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Laparoscopic pancreatic surgery remains highly challenging due to the complexity of the pancreas and surrounding vascular structures, with risk of injuring critical blood vessels such as the Superior Mesenteric Vein (SMV)-Portal Vein (PV) axis and splenic vein. Here, we evaluated the High Resolution Network (HRNet)-Full Convolutional Network (FCN) model for its ability to accurately identify vascular contours and improve surgical safety. Using 12,694 images from 126 laparoscopic distal pancreatectomy (LDP) videos and 35,986 images from 138 Whipple procedure videos, the model demonstrated robust performance, achieving a mean Dice coefficient of 0.754, a recall of 85.00%, and a precision of 91.10%. By combining datasets from LDP and Whipple procedures, the model showed strong generalization across different surgical contexts and achieved real-time processing speeds of 11 frames per second during surgery process. These findings highlight HRNet-FCN's potential to recognize anatomical landmarks, enhance surgical precision, reduce complications, and improve laparoscopic pancreatic outcomes.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Management of the splenic vein during a pancreaticoduodenectomy with venous resection for malignancy [J].
Addeo, Pietro ;
Nappo, Gennaro ;
Felli, Emanuele ;
Oncioiu, Constantin ;
Faitot, Francois ;
Bachellier, Philippe .
UPDATES IN SURGERY, 2016, 68 (03) :241-246
[2]  
Ammori Basil J, 2003, JOP, V4, P187
[3]   Role of artificial intelligence in hepatobiliary and pancreatic surgery [J].
Bari, Hassaan ;
Wadhwani, Sharan ;
Dasari, Bobby V. M. .
WORLD JOURNAL OF GASTROINTESTINAL SURGERY, 2021, 13 (01) :7-18
[4]  
Caballas K., 2021, Development of a Visual Guidance System for Laparoscopic Surgical Palpation using Computer Vision
[5]   Laparoscopic pancreatectomy for benign or low-grade malignant pancreatic tumors: outcomes in a single high-volume institution [J].
Cai, He ;
Feng, Lu ;
Peng, Bing .
BMC SURGERY, 2021, 21 (01)
[6]   NephCNN: A deep-learning framework for vessel segmentation in nephrectomy laparoscopic videos [J].
Casella, Alessandro ;
Moccia, Sara ;
Carlini, Chiara ;
Frontoni, Emanuele ;
De Momi, Elena ;
Mattos, Leonardo S. .
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, :6144-6149
[7]  
Chen J., 2021, PREPRINT
[8]  
Chen LC, 2017, Arxiv, DOI arXiv:1706.05587
[9]   Artificial intelligence-based automated laparoscopic cholecystectomy surgical phase recognition and analysis [J].
Cheng, Ke ;
You, Jiaying ;
Wu, Shangdi ;
Chen, Zixin ;
Zhou, Zijian ;
Guan, Jingye ;
Peng, Bing ;
Wang, Xin .
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2022, 36 (05) :3160-3168
[10]   Laparoscopic distal pancreatectomy for benign or borderline malignant pancreatic tumors [J].
Chung, Jun Chul ;
Kim, Hyung Chul ;
Song, Ok Pyung .
TURKISH JOURNAL OF GASTROENTEROLOGY, 2014, 25 :162-166