Branching random walks and Minkowski sum of random walksBranching random walks...A. Asselah et al.

被引:0
作者
Amine Asselah [1 ]
Izumi Okada [2 ]
Bruno Schapira [3 ]
Perla Sousi [4 ]
机构
[1] Université Paris-Est,LAMA, UMR 8050, UPEC, UPEMLV, CNRS
[2] Chiba University,Faculty of Science, Department of Mathematics and Informatics
[3] Aix-Marseille Université,CNRS, I2M, UMR 7373
[4] University of Cambridge,undefined
关键词
Capacity; Range of random walk; Branching random walk; Branching capacity; Intersection probability; 60F15; 60G50; 60J45;
D O I
10.1007/s00440-024-01352-7
中图分类号
学科分类号
摘要
We show that the range of a critical branching random walk conditioned to survive forever and the Minkowski sum of two independent simple random walk ranges are intersection-equivalent in any dimension d≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 5$$\end{document}, in the sense that they hit any finite set with comparable probability, as their common starting point is sufficiently far away from the set to be hit. Furthermore, we extend a discrete version of Kesten, Spitzer and Whitman’s result on the law of large numbers for the volume of a Wiener sausage. Here, the sausage is made of the Minkowski sum of N independent simple random walk ranges in Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^d$$\end{document}, with d≥2N+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2N+1$$\end{document}, and of a finite set A⊂Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\subset \mathbb {Z}^d$$\end{document}. When properly normalised the volume of the sausage converges to a quantity equivalent to the capacity of A with respect to the kernel k(x,y)=(1+‖x-y‖)2N-d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k(x,y)=(1+\Vert x-y\Vert )^{2N-d}$$\end{document}. As a consequence, we establish a new relation between capacity and branching capacity.
引用
收藏
页码:1289 / 1322
页数:33
相关论文
empty
未找到相关数据