Are SNNs Truly Energy-efficient? - A Hardware Perspective

被引:1
|
作者
Bhattacharjee, Abhiroop [1 ]
Yin, Ruokai [1 ]
Moitra, Abhishek [1 ]
Panda, Priyadarshini [1 ]
机构
[1] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2024) | 2024年
基金
美国国家科学基金会;
关键词
Spiking Neural Networks; Systolic-arrays; In-memory Computing; Crossbars; Energy-efficiency;
D O I
10.1109/ICASSP48485.2024.10448269
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Spiking Neural Networks (SNNs) have gained attention for their energy-efficient machine learning capabilities, utilizing bio-inspired activation functions and sparse binary spike-data representations. While recent SNN algorithmic advances achieve high accuracy on large-scale computer vision tasks, their energy-efficiency claims rely on certain impractical estimation metrics. This work studies two hardware benchmarking platforms for large-scale SNN inference, namely SATA and SpikeSim. SATA is a sparsity-aware systolic-array accelerator, while SpikeSim evaluates SNNs implemented on In-Memory Computing (IMC) based analog crossbars. Using these tools, we find that the actual energy-efficiency improvements of recent SNN algorithmic works differ significantly from their estimated values due to various hardware bottlenecks. We identify and addresses key roadblocks to efficient SNN deployment on hardware, including repeated computations & data movements over timesteps, neuronal module overhead and vulnerability of SNNs towards crossbar non-idealities.
引用
收藏
页码:13311 / 13315
页数:5
相关论文
共 50 条
  • [41] Energy-Efficient Indoor Networks
    Kazovsky, Leonid G.
    Gowda, Apurva S.
    Yang, Hejie
    Abraha, Solomon T.
    Ng'oma, Anthony
    Dhaini, Ahmad R.
    2014 IEEE ONLINE CONFERENCE ON GREEN COMMUNICATIONS (ONLINEGREENCOMM), 2014,
  • [42] Online learning in SNNs with e-prop and Neuromorphic Hardware
    Perrett, Adam
    Summerton, Sara
    Gait, Andrew
    Rhodes, Oliver
    PROCEEDINGS OF THE 2022 ANNUAL NEURO-INSPIRED COMPUTATIONAL ELEMENTS CONFERENCE (NICE 2022), 2022, : 32 - 39
  • [43] Energy-Efficient Histogram on FPGA
    Sanny, Andrea
    Yang, Yi-Hua E.
    Prasanna, Viktor K.
    2014 INTERNATIONAL CONFERENCE ON RECONFIGURABLE COMPUTING AND FPGAS (RECONFIG), 2014,
  • [44] Energy-Efficient Internetworking with DTN
    Vardalis, Dimitris
    Tsaoussidis, Vassilis
    WIRED/WIRELESS INTERNET COMMUNICATIONS, 2011, 6649 : 220 - 233
  • [45] Energy-efficient communication protocols
    Chiasserini, CF
    Nuggehalli, P
    Srinivasan, V
    39TH DESIGN AUTOMATION CONFERENCE, PROCEEDINGS 2002, 2002, : 824 - 829
  • [46] Energy-efficient use of drives
    Drescher, Dieter
    Angsmann, Christian
    Kunststoffe International, 2019, 109 (09): : 102 - 106
  • [47] Energy-efficient buildings with energy-efficient optimized models: a case study on thermal bridge detection
    Fisne, Alparslan
    Yurtsever, M. Mucahit Enes
    Eken, Suleyman
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (09): : 12787 - 12797
  • [48] Energy-Efficient Resource Allocation for Wireless Power Transfer Enabled Massive MIMO Systems with Hardware Impairments
    Wan, Xiaoyu
    Yang, Xiaona
    Wang, Zhengqiang
    Yang, Xiaoxia
    Fan, Zifu
    2018 10TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2018,
  • [49] Energy-efficient data centers
    Junaid Shuja
    Sajjad A. Madani
    Kashif Bilal
    Khizar Hayat
    Samee U. Khan
    Shahzad Sarwar
    Computing, 2012, 94 : 973 - 994
  • [50] ENERGY-EFFICIENT TIMBER BUILDINGS
    Kuzman, Manja Kitek
    Zbasnik-Senegacnik, Martina
    WOOD PROCESSING AND FURNITURE MANUFACTURING CHALLENGES ON THE WORLD MARKET AND WOOD-BASED ENERGY GOES GLOBAL, 2015, : 87 - 92