Investigation of the effects of 3D printing parameters on mechanical tests of PLA parts produced by MEX 3D printing using Taguchi method

被引:0
|
作者
Özgür Verim [1 ]
Omar Saeed [2 ]
Mohamed Hamdy Eid [3 ]
Samy F. Mahmoud [4 ]
Dalia I. Saleh [5 ]
Abdallah Elshawadfy Elwakeel [6 ]
机构
[1] Afyon Kocatepe University,Department of Mechanical Engineering, Faculty of Technology
[2] Hungarian University of Agriculture and Life Sciences (MATE),Doctoral School of Environmental Science
[3] University of Miskolc,Institute of Environmental Management, Faculty of Earth Science
[4] Beni-Suef University,Geology Department, Faculty of Science
[5] Taif University,Department of Biotechnology, College of Science
[6] Taif University,Department of Chemistry, College of Science
[7] Aswan University,Department of Agricultural Engineering, Faculty of Agriculture and Natural Resources
关键词
Infill density; Layer thickness; Raster angle; Printing speed; Wall thickness; Taguchi analysis; Mechanical test; PLA; MEX;
D O I
10.1038/s41598-025-98832-0
中图分类号
学科分类号
摘要
With the widespread use of the Material Extrusion method in the 3D printing industry, it has become important to determine the optimum printing parameters to improve the mechanical characteristics of Polylactic Acid material according to the place of use. It is important to choose the right press parameters according to the forces to which the material is subjected. In research, we examined the impacts of 3D printing parameters such as Layer Thickness, Infill Density, Raster Angle, Printing Speed, and Wall Thickness on mechanical tests covering tensile, compression, flexural, impact, hardness, and surface roughness. We employed Taguchi analysis to streamline the number of experiments and determine the optimal printing parameters to maximize mechanical performance. Five samples were determined for each experimental design measurement. According to the results of the research, Layer Thickness and Infill Density parameters were found to be very important parameters in mechanical tests according to the effect and contribution ratios. The effect ranking of the Infill Density parameter on tensile, compressive and impact strength was the best (1) and the contribution rate was the highest (55.21%, 80.86% and 63.61%). In flexural strength, the order of effect and contribution rate (25.66%) were found in the 2nd place. The effect of Layer Thickness parameter on impact, hardness and surface roughness tests was found to be significant (2,1 and 1). The effect values in tensile and compression tests were also found to be moderate (3). Considering the efficiency levels and contribution rates for the other parameters, the order of importance can be listed as Wall Thickness, Raster Angle and Printing Speed. With the help of this study, the importance levels of the parameters during the formation of parts under combined forces were determined and presented to the literature.
引用
收藏
相关论文
共 50 条
  • [31] THERMOVISUAL MEASUREMENTS OF 3D PRINTING OF ABS AND PLA FILAMENTS
    Zgryza, Lukasz
    Raczynska, Anna
    Pasnikowska-Lukaszuk, Magdalena
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2018, 12 (03): : 266 - 271
  • [32] Exploring the Impact of 3D Printing Parameters on the Compression Strength of Recycled PLA Filament
    Hussin, M. S.
    Hamat, S.
    Ishak, M. R.
    Sapuan, S. M.
    Yidris, N.
    Ali, S. A. S.
    Ibrahim, M.
    Sanuddin, A. B.
    Darsin, M.
    INTELLIGENT MANUFACTURING AND MECHATRONICS, SIMM 2023, 2024, : 581 - 591
  • [33] Optimization of 3D Printing Operation Parameters for Tensile Strength in PLA Based Sample
    Gunay, Mustafa
    Gunduz, Suleyman
    Yilmaz, Hakan
    Yasar, Nafiz
    Kacar, Ramazan
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2020, 23 (01): : 73 - 79
  • [34] Fused Filament Fabrication 3D Printing Parameters Affecting the Translucency of Polylactic Acid Parts
    Vochozka, Vladimir
    Cerny, Pavel
    Sramhauser, Karel
    Spalek, Frantisek
    Kriz, Pavel
    Cech, Jiri
    Zoubek, Tomas
    Bartos, Petr
    Kresan, Jan
    Stehlik, Radim
    POLYMERS, 2024, 16 (20)
  • [35] 3D Printing Parameter Optimization Using Taguchi Approach to Examine Acrylonitrile Styrene Acrylate (ASA) Mechanical Properties
    Hameed, Abdul Zubar
    Aravind Raj, Sakthivel
    Kandasamy, Jayakrishna
    Shahzad, Muhammad Atif
    Baghdadi, Majed Abubakr
    POLYMERS, 2022, 14 (16)
  • [36] Binder jet 3D printing of 316L stainless steel: A Taguchi analysis of the dependence of density and mechanical properties on the printing parameters
    Zago, M.
    Segata, G.
    Perina, M.
    Molinari, A.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 34 : 337 - 347
  • [37] Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing
    Fernandez-Vicente, Miguel
    Calle, Wilson
    Ferrandiz, Santiago
    Conejero, Andres
    3D PRINTING AND ADDITIVE MANUFACTURING, 2016, 3 (03) : 183 - 192
  • [38] 3D Printing of PLA/clay Nanocomposites: Influence of Printing Temperature on Printed Samples Properties
    Coppola, Bartolomeo
    Cappetti, Nicola
    Di Maio, Luciano
    Scarfato, Paola
    Incarnato, Loredana
    MATERIALS, 2018, 11 (10)
  • [39] THE INFLUENCE OF 3D PRINTING PARAMETERS AND HEAT TREATMENT ON TRIBOLOGICAL BEHAVIOR
    Portoaca, Alexandra-Ileana
    Ripeanu, George-Razvan
    Nae, Ion
    Tanase, Maria
    ACTA TECHNICA NAPOCENSIS SERIES-APPLIED MATHEMATICS MECHANICS AND ENGINEERING, 2023, 66 (05): : 537 - 546
  • [40] A multi-parametric process evaluation of the mechanical response of PLA in FFF 3D printing
    Kechagias, J. D.
    Vidakis, N.
    Petousis, M.
    Mountakis, N.
    MATERIALS AND MANUFACTURING PROCESSES, 2023, 38 (08) : 941 - 953