Missing data are common with large scale assessments (LSAs). A typical approach to handling missing data with LSAs is the use of listwise deletion, despite decades of research showing that approach can be a suboptimal strategy resulting in biased estimates. In order to help researchers account for missing data, we provide a tutorial using R and the freely available Blimp program to impute and analyze multiply imputed datasets.
机构:
Indiana Univ, Dept Counseling & Educ Psychol, Bloomington, IN 47405 USAIndiana Univ, Dept Counseling & Educ Psychol, Bloomington, IN 47405 USA
Rutkowski, Leslie
Gonzalez, Eugenio
论文数: 0引用数: 0
h-index: 0
机构:
IEA Data Proc & Res Ctr, Res & Anal Unit, Princeton, NJ 08540 USA
IEA Data Proc & Res Ctr, Educ Testing Serv, Princeton, NJ 08540 USAIndiana Univ, Dept Counseling & Educ Psychol, Bloomington, IN 47405 USA
Gonzalez, Eugenio
Joncas, Marc
论文数: 0引用数: 0
h-index: 0
机构:
STAT Canada, Social Survey Methods Div, Ottawa, ON K1A 0T6, CanadaIndiana Univ, Dept Counseling & Educ Psychol, Bloomington, IN 47405 USA
Joncas, Marc
von Davier, Matthias
论文数: 0引用数: 0
h-index: 0
机构:
Educ Testing Serv, Div Res & Dev, Princeton, NJ 08541 USAIndiana Univ, Dept Counseling & Educ Psychol, Bloomington, IN 47405 USA