Anomaly detection in cropland monitoring using multiple view vision transformer

被引:1
作者
Liu, Xuesong [1 ]
Liu, Yansong [2 ]
Sui, He [3 ]
Qin, Chuan [4 ]
Che, Yuanxi [5 ]
Guo, Zhaobo [1 ]
机构
[1] Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Scotland
[2] Shandong Management Univ, Sch Intelligence Engn, Jinan 250357, Peoples R China
[3] Civil Aviat Univ China, Coll Aeronaut Engn, Tianjin 300300, Peoples R China
[4] Univ Melbourne, Dept Infrastruct Engn, Melbourne, Vic 3010, Australia
[5] Xidian Univ, Dept Comp Sci, Xian 710126, Peoples R China
关键词
Vision transformer; Anomaly detection; Low altitude; Cropland; Machine vision; Attention mechanism;
D O I
10.1038/s41598-025-98405-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent times, the importance of low-altitude security, especially in agricultural surveillance, has seen a remarkable upswing. This paper puts forward a novel Internet of Drones framework tailored for low-altitude operations. Anomaly detection, which is pivotal for ensuring the integrity of the entire system, poses a substantial challenge. Such anomalies can range from unpredictable weather patterns in farmlands to unauthorized intrusions. To surmount this, a comprehensive deep learning pipeline is proposed in this study. It deploys a vision transformer model featuring a unique attention mechanism. The pipeline includes the meticulous collection of a vast array of normal and abnormal farmland images, followed by preprocessing to standardize data. Anomaly detection is then carried out, and the model's performance is evaluated using metrics like sensitivity (92.8%), specificity (93.1%), accuracy (93.5%), and F1 score (94.1%). Comparative analysis with state-of-the-art algorithms reveals the superiority of the proposed model. In the future, this study plans to explore integrating data from thermal, infrared, or LIDAR sensors, enhance the interpretability of the vision transformer model, and optimize the deep learning pipeline to reduce computational complexity.
引用
收藏
页数:12
相关论文
共 34 条
[1]  
[Anonymous], 2012, Adv. Mater. Res, DOI DOI 10.4028/WWW.SCIENTIFIC.NET/AMR.546-547.898
[2]   A Novel GAN-Based Anomaly Detection and Localization Method for Aerial Video Surveillance at Low Altitude [J].
Avola, Danilo ;
Cannistraci, Irene ;
Cascio, Marco ;
Cinque, Luigi ;
Diko, Anxhelo ;
Fagioli, Alessio ;
Foresti, Gian Luca ;
Lanzino, Romeo ;
Mancini, Maurizio ;
Mecca, Alessio ;
Pannone, Daniele .
REMOTE SENSING, 2022, 14 (16)
[3]   Low-Altitude Aerial Video Surveillance via One-Class SVM Anomaly Detection from Textural Features in UAV Images [J].
Avola, Danilo ;
Cinque, Luigi ;
Di Mambro, Angelo ;
Diko, Anxhelo ;
Fagioli, Alessio ;
Foresti, Gian Luca ;
Marini, Marco Raoul ;
Mecca, Alessio ;
Pannone, Daniele .
INFORMATION, 2022, 13 (01)
[4]  
Bietresato M, 2016, 2016 12TH IEEE/ASME INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS (MESA)
[5]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[6]  
Chen W., 2021, A simple single-scale vision transformer for object localization and instance segmentation
[7]   TensorMask: A Foundation for Dense Object Segmentation [J].
Chen, Xinlei ;
Girshick, Ross ;
He, Kaiming ;
Dollar, Piotr .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :2061-2069
[8]  
Dosovitskiy A., 2020, ICLR 2021
[9]  
Dosovitskiy A., 2021, P INT C LEARN REPR, DOI [10.48550/arXiv.2010.11929, DOI 10.48550/ARXIV.2010.11929]
[10]   Multiscale Vision Transformers [J].
Fan, Haoqi ;
Xiong, Bo ;
Mangalam, Karttikeya ;
Li, Yanghao ;
Yan, Zhicheng ;
Malik, Jitendra ;
Feichtenhofer, Christoph .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :6804-6815