共 51 条
- [1] Ambient (Outdoor) air pollution, World Health Organization
- [2] Janarthanan R., Partheeban P., Somasundaram K., Elamparithi P.N., A deep learning approach for prediction of air quality index in a metropolitan city, Sust Cit Soc, 67, (2021)
- [3] Chen J., Lu J., Avise J.C., DaMassa J.A., Kleeman M.J., Kaduwela A.P., Seasonal modeling of PM2.5 in California’s san joaquin valley, Atmos Environ, 92, pp. 182-190, (2014)
- [4] Tie X., Madronich S., Li G., Ying Z., Zhang R., Garcia A.R., Et al., Characterizations of chemical oxidants in Mexico city: a regional chemical dynamical model (WRF-Chem) study, Atmos Environ, 41, 9, pp. 1989-2008, (2007)
- [5] Wang Z., Li J., Wang Z., Yang W., Tang X., Ge B., Et al., Modeling study of regional severe hazes over mid-eastern China in January 2013 and its implications on pollution prevention and control, Sci China Earth Sci, 57, pp. 3-13, (2014)
- [6] Lv B., Cobourn W.G., Bai Y., Development of nonlinear empirical models to forecast daily PM2.5 and ozone levels in three large Chinese cities, Atmos Environ, 147, pp. 209-223, (2016)
- [7] Zhou Y., Chang F.J., Chang L.C., Kao I.F., Wang Y.S., Kang C.C., Multi-output support vector machine for regional multi-step-ahead PM2.5 forecasting, Sci Total Environ, 651, pp. 230-240, (2019)
- [8] Zhang L., Lin J., Qiu R., Hu X., Zhang H., Chen Q., Et al., Trend analysis and forecast of PM2.5 in Fuzhou, China using the ARIMA model, Ecol Indic, 95, pp. 702-710, (2018)
- [9] Papanastasiou D., Melas D., Kioutsioukis I., Development and assessment of neural network and multiple regression models in order to predict PM10 levels in a medium-sized Mediterranean city, Water Air Soil Pollut, 182, pp. 325-334, (2007)
- [10] Ma Z., Hu X., Huang L., Bi J., Liu Y., Estimating ground-level PM2.5 in China using satellite remote sensing, Environ Sci Technol, 48, 13, pp. 7436-7444, (2014)