Classical (and quantum) heuristics for gravitational wave detection

被引:0
|
作者
D'Agnolo, Raffaele Tito [1 ,2 ]
Ellis, Sebastian A. R. [3 ]
机构
[1] Univ Paris Saclay, Inst Phys Theor, CEA, F-91191 Gif Sur Yvette, France
[2] Univ Paris Cite, Sorbonne Univ, Lab Phys Ecole Normale Super, Univ PSL,CNRS,ENS, F-75005 Paris, France
[3] Univ Geneva, Dept Phys Theor, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2025年 / 04期
关键词
Classical Theories of Gravity; Cosmological models; Early Universe Particle Physics; Phase Transitions in the Early Universe; NOISE; LIMIT;
D O I
10.1007/JHEP04(2025)164
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We derive a lower bound on the sensitivity of generic mechanical and electromagnetic gravitational wave detectors. We consider both classical and quantum detection schemes, although we focus on the former. Our results allow for a simple reproduction of the sensitivities of a variety of experiments, including optical interferometers, resonant bars, optomechanical sensors, and electromagnetic conversion experiments. In the high-frequency regime, all detection schemes we consider can be characterised by their stored electromagnetic energy and the signal transfer function, which we provide. We discuss why high-frequency gravitational wave searches are especially difficult and primordial gravitational wave backgrounds might not be detectable above the sensitivity window of existing interferometers.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Principles of gravitational wave detection
    Fidecaro, F.
    GRAVITATIONAL WAVES AND COSMOLOGY, 2020, 200 : 1 - 39
  • [2] Quantum metrology for gravitational wave astronomy
    Schnabel, Roman
    Mavalvala, Nergis
    McClelland, David E.
    Lam, Ping K.
    NATURE COMMUNICATIONS, 2010, 1
  • [3] Classical and quantum gravitational scattering with Generalized Wilson Lines
    D. Bonocore
    A. Kulesza
    J. Pirsch
    Journal of High Energy Physics, 2022
  • [4] Classical and quantum gravitational scattering with Generalized Wilson Lines
    Bonocore, D.
    Kulesza, A.
    Pirsch, J.
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (03)
  • [5] Atom interferometry for gravitational wave detection
    Vetrano, F.
    ATOM INTERFEROMETRY, 2014, 188 : 605 - 629
  • [6] Squeezed Light for Gravitational Wave Detection
    Schnabel, Roman
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [7] Quantum gravity and gravitational-wave astronomy
    Calcagni, Gianluca
    Kuroyanagi, Sachiko
    Marsat, Sylvain
    Sakellariadou, Mairi
    Tamanini, Nicola
    Tasinato, Gianmassimo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (10):
  • [8] Quantum measurements in gravitational-wave detectors
    Khalili, F. Ya
    PHYSICS-USPEKHI, 2016, 59 (10) : 968 - 996
  • [9] Gravitational wave memory and quantum Michelson interferometer
    Guo, Zhong-Kai
    Wang, Xiao-Yong
    PHYSICAL REVIEW D, 2024, 109 (12)
  • [10] Scalar-induced gravitational wave from domain wall perturbation
    Bo-Qiang Lu
    Journal of High Energy Physics, 2025 (5)