Rotation-Adaptive Point Cloud Domain Generalization via Intricate Orientation Learning

被引:0
作者
Liu, Bangzhen [1 ]
Zheng, Chenxi [1 ]
Xu, Xuemiao [1 ,2 ]
Xu, Cheng [1 ]
Zhang, Huaidong [1 ]
He, Shengfeng [1 ,3 ]
机构
[1] South China Univ Technol, Guangzhou 510006, Peoples R China
[2] Guangdong Prov Key Lab Computat Intelligence & Cyb, Guangdong Engn Ctr Large Model & GenAI Technol, State Key Lab Subtrop Bldg & Urban Sci, Minist Educ Key Lab Big Dataand Intelligent Robot, Guangzhou 510006, Peoples R China
[3] Singapore Management Univ, Singapore 188065, Singapore
基金
新加坡国家研究基金会;
关键词
Three-dimensional displays; Point cloud compression; Training; Robustness; Solid modeling; Shape; Contrastive learning; Analytical models; Computational modeling; Accuracy; Point cloud domain generalization; contrastive learning; rotation robustness; intricate orientation mining;
D O I
10.1109/TPAMI.2025.3535230
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The vulnerability of 3D point cloud analysis to unpredictable rotations poses an open yet challenging problem: orientation-aware 3D domain generalization. Cross-domain robustness and adaptability of 3D representations are crucial but not easily achieved through rotation augmentation. Motivated by the inherent advantages of intricate orientations in enhancing generalizability, we propose an innovative rotation-adaptive domain generalization framework for 3D point cloud analysis. Our approach aims to alleviate orientational shifts by leveraging intricate samples in an iterative learning process. Specifically, we identify the most challenging rotation for each point cloud and construct an intricate orientation set by optimizing intricate orientations. Subsequently, we employ an orientation-aware contrastive learning framework that incorporates an orientation consistency loss and a margin separation loss, enabling effective learning of categorically discriminative and generalizable features with rotation consistency. Extensive experiments and ablations conducted on 3D cross-domain benchmarks firmly establish the state-of-the-art performance of our proposed approach in the context of orientation-aware 3D domain generalization.
引用
收藏
页码:4232 / 4239
页数:8
相关论文
共 46 条
[1]   Self-Supervised Learning for Domain Adaptation on Point Clouds [J].
Achituve, Idan ;
Maron, Haggai ;
Chechik, Gal .
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, :123-133
[2]   Integrating structured biological data by Kernel Maximum Mean Discrepancy [J].
Borgwardt, Karsten M. ;
Gretton, Arthur ;
Rasch, Malte J. ;
Kriegel, Hans-Peter ;
Schoelkopf, Bernhard ;
Smola, Alex J. .
BIOINFORMATICS, 2006, 22 (14) :E49-E57
[3]   Segmentation and Recognition Using Structure from Motion Point Clouds [J].
Brostow, Gabriel J. ;
Shotton, Jamie ;
Fauqueur, Julien ;
Cipolla, Roberto .
COMPUTER VISION - ECCV 2008, PT I, PROCEEDINGS, 2008, 5302 :44-+
[4]  
Cardace Adriano, 2023, P WINT C APPL COMP V, P4166
[5]   ClusterNet: Deep Hierarchical Cluster Network with Rigorously Rotation-Invariant Representation for Point Cloud Analysis [J].
Chen, Chao ;
Li, Guanbin ;
Xu, Ruijia ;
Chen, Tianshui ;
Wang, Meng ;
Lin, Liang .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4989-4997
[6]   Equivariant Point Network for 3D Point Cloud Analysis [J].
Chen, Haiwei ;
Liu, Shichen ;
Chen, Weikai ;
Li, Hao ;
Hill, Randall .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :14509-14518
[7]   The Devil is in the Pose: Ambiguity-free 3D Rotation-invariant Learning via Pose-aware Convolution [J].
Chen, Ronghan ;
Cong, Yang .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :7462-7471
[8]   Local-consistent Transformation Learning for Rotation-invariant Point Cloud Analysis [J].
Chen, Yiyang ;
Duan, Lunhao ;
Zhao, Shanshan ;
Ding, Changxing ;
Tao, Dacheng .
2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, :5418-5427
[9]   ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes [J].
Dai, Angela ;
Chang, Angel X. ;
Savva, Manolis ;
Halber, Maciej ;
Funkhouser, Thomas ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2432-2443
[10]   Vector Neurons: A General Framework for SO(3)-Equivariant Networks [J].
Deng, Congyue ;
Litany, Or ;
Duan, Yueqi ;
Poulenard, Adrien ;
Tagliasacchi, Andrea ;
Guibas, Leonidas .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :12180-12189