SOME BOHR-TYPE INEQUALITIES FOR SENSE-PRESERVING HARMONIC MAPPINGS

被引:0
作者
Amusa, I. S. [1 ]
Mogbademu, A. A. [2 ]
机构
[1] Yaba Coll Technol, Dept Math, Lagos, Nigeria
[2] Univ Lagos, Dept Math, Lagos, Nigeria
来源
PROBLEMY ANALIZA-ISSUES OF ANALYSIS | 2025年 / 14卷 / 01期
关键词
Bohr-type inequality; sense-preserving harmonic map- ping; Taylor series coefficient; THEOREM;
D O I
10.15393/j3.art.2025.16770
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the Bohr-type radii for various forms of Bohr-type inequalities for the sense-preserving harmonic mapping of the form f(z) = h(z) + g(z).
引用
收藏
页码:3 / 21
页数:19
相关论文
共 16 条
[1]  
Abu Muhanna Y, 2017, SPRINGER OPTIM APPL, V117, P269, DOI 10.1007/978-3-319-49242-1_13
[2]   Multidimensional analogues of Bohr's theorem on power series [J].
Aizenberg, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) :1147-1155
[3]   Bohr Phenomenon for Locally Univalent Functions and Logarithmic Power Series [J].
Bhowmik, Bappaditya ;
Das, Nilanjan .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2019, 19 (04) :729-745
[4]  
Bohr H, 1914, P LOND MATH SOC, V13, P1
[5]   BANACH-ALGEBRAS SATISFYING THE NON-UNITAL VON-NEUMANN-INEQUALITY [J].
DIXON, PG .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 :359-362
[6]  
Duren P, 2004, HARMONIC MAPPINGS PL
[7]   Improved Bohr's inequality for locally univalent harmonic mappings [J].
Evdoridis, Stavros ;
Ponnusamy, Saminathan ;
Rasila, Antti .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (01) :201-213
[8]  
Hardy G. H., 1915, GEN THEORY DIRICHLET
[9]  
Ismagilov A., 2018, SER SOVREM MAT PRIL, V153, P69
[10]   Sharp Bohr type inequality [J].
Ismagilov, Amir ;
Kayumov, Ilgiz R. ;
Ponnusamy, Saminathan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (01)