Bohr-Rogosinski radius for holomorphic mappings with values in higher dimensional complex Banach spaces

被引:0
作者
Hamada, Hidetaka [1 ]
Honda, Tatsuhiro [2 ]
Kohr, Mirela [3 ]
机构
[1] Kyushu Sangyo Univ, Fac Sci & Engn, 3-1 Matsukadai,2 Chome,Higashi Ku, Fukuoka 8138503, Japan
[2] Senshu Univ, Sch Commerce, Dept Commercial Sci, 2-1-1 Higashimita,Tama Ku, Kawasaki 2148580, Japan
[3] Babes Bolyai Univ, Fac Math & Comp Sci, 1 M Kogalniceanu Str, Cluj Napoca 400084, Romania
基金
日本学术振兴会;
关键词
Bohr-Rogosinski radius; Holomorphic mapping; Homogeneous polynomial expansion; JB(& lowast; )-triple; Subordinate; Unit polydisc; SUBORDINATING FAMILIES; THEOREM; SERIES;
D O I
10.1007/s13324-025-01061-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Bohr-Rogosinski radius for holomorphic mappings on the unit ball of a complex Banach space with values in a higher dimensional complex Banach space. First, we obtain the Bohr-Rogosinski radius for holomorphic mappings with values in the closure of the unit polydisc of the space C-n, n >= 2. Next, we obtain the Bohr-Rogosinski radius for holomorphic mappings with values in the closure of the unit ball of a JB*-triple. Finally, we obtain the Bohr-Rogosinski radius for a class of subordinations on the unit ball of a complex Banach space. All of the results are proved to be sharp.
引用
收藏
页数:19
相关论文
共 49 条
[1]   Bohr radius for subordinating families of analytic functions and bounded harmonic mappings [J].
Abu Muhanna, Y. ;
Ali, Rosihan M. ;
Ng, Zhen Chuan ;
Hasni, Siti Farah M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) :124-136
[2]   Bohr's phenomenon for analytic functions into the exterior of a compact convex body [J].
Abu Muhanna, Y. ;
Ali, Rosihan M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) :512-517
[3]  
Abu Muhanna Y, 2017, SPRINGER OPTIM APPL, V117, P269, DOI 10.1007/978-3-319-49242-1_13
[4]   Bohr's phenomenon in subordination and bounded harmonic classes [J].
Abu Muhanna, Yusuf .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (11) :1071-1078
[5]  
Ahamed M.B., Acta Math. Sci. Ser. B (Engl. Ed.
[6]   Bohr-Rogosinski-Type Inequalities for Certain Classes of Functions: Analytic, Univalent, and Convex [J].
Ahamed, Molla Basir ;
Ahammed, Sabir .
RESULTS IN MATHEMATICS, 2023, 78 (05)
[7]   Bohr-Rogosinski radius for a certain class of close-to-convex harmonic mappings [J].
Ahamed, Molla Basir ;
Allu, Vasudevarao .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (03) :1014-1029
[8]   Bohr-Rogosinski Inequalities for Certain Fully Starlike Harmonic Mappings [J].
Ahamed, Molla Basir ;
Allu, Vasudevarao .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (04) :1913-1927
[9]   On the Rogosinski radius for holomorphic mappings and some of its applications [J].
Aizenberg, L ;
Elin, M ;
Shoikhet, D .
STUDIA MATHEMATICA, 2005, 168 (02) :147-158
[10]   Remarks on the Bohr and Rogosinski phenomena for power series [J].
Aizenberg, Lev .
ANALYSIS AND MATHEMATICAL PHYSICS, 2012, 2 (01) :69-78