A No-Go Theorem for ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Ontic Models? No, Surely Not!

被引:0
作者
Shan Gao [1 ]
机构
[1] Shanxi University,Research Center for Philosophy of Science and Technology
关键词
Quantum state; ψ-ontic models; Information entropy; Shannon entropy; von Neumann entropy; Indistinguishability of non-orthogonal states;
D O I
10.1007/s10701-025-00845-2
中图分类号
学科分类号
摘要
In a recent reply to my criticisms (Carcassi et al. in Found Phys 55:5, 2025), Carcassi, Oldofredi, and Aidala (COA) admitted that their no-go result for ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-ontic models is based on the implicit assumption that all states are equally distinguishable, but insisted that this assumption is a part of the ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-ontic models defined by Harrigan and Spekkens, thus maintaining their result’s validity. In this note, I refute their argument again, emphasizing that the ontological models framework (OMF) does not entail this assumption. I clarify the distinction between ontological distinctness and experimental distinguishability, showing that the latter depends on dynamics absent from OMF, and address COA’s broader claims about quantum statistical mechanics and Bohmian mechanics.
引用
收藏
相关论文
empty
未找到相关数据