Seismic Random Noise Attenuation via Low-Rank Tensor Network

被引:0
作者
Zhao, Taiyin [1 ]
Ouyang, Luoxiao [1 ]
Chen, Tian [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Lab Intelligent Collaborat Comp, Chengdu 610054, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2025年 / 15卷 / 07期
关键词
low-rank approximation (LRA); deep learning (DL); total variation (TV); weighted tensor nuclear norm (WTNN); random noise; RECONSTRUCTION; SUPPRESSION; PACKAGE;
D O I
10.3390/app15073453
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Seismic data are easily contaminated by random noise, impairing subsequent geological interpretation tasks. Existing denoising methods like low-rank approximation (LRA) and deep learning (DL) show promising denoising capabilities but still have limitations; for instance, LRA performance is parameter-sensitive, and DL networks lack interpretation. As an alternative, this paper introduces the low-rank tensor network (LRTNet), an innovative approach that integrates low-rank tensor approximation (LRTA) with DL. Our method involves constructing a noise attenuation model that leverages LRTA, total variation (TV) regularization, and weighted tensor nuclear norm minimization (WTNNM). By applying the alternating direction method of multipliers (ADMM), we solve the model and transform the iterative schemes into a DL framework, where each iteration corresponds to a network layer. The key learnable parameters, including weights and thresholds, are optimized using labeled data to enhance performance. Quantitative evaluations on synthetic data reveal that LRTNet achieves an average signal-to-noise ratio (SNR) of 9.37 dB on the validation set, outperforming Pyseistr (6.46 dB) and TNN-SSTV (6.10 dB) by 45.0% and 53.6%, respectively. Furthermore, tests on real field datasets demonstrate consistent enhancements in noise suppression while preserving critical stratigraphic structures and fault discontinuities. The embedded LRTA mechanism not only improves network interpretability, but also reduces parameter sensitivity compared to conventional LRA methods. These findings position LRTNet as a robust, physics-aware solution for seismic data restoration.
引用
收藏
页数:23
相关论文
共 52 条
[1]  
Adamo A, 2015, INT GEOSCI REMOTE SE, P4292, DOI 10.1109/IGARSS.2015.7326775
[2]   LRSR-ADMM-Net: A Joint Low-Rank and Sparse Recovery Network for SAR Imaging [J].
An, Hongyang ;
Jiang, Ruili ;
Wu, Junjie ;
Teh, Kah Chan ;
Sun, Zhichao ;
Li, Zhongyu ;
Yang, Jianyu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[3]   Enhancing 3-D Seismic Data Using the t-SVD and Optimal Shrinkage of Singular Value [J].
Anvari, Rasoul ;
Mohammadi, Mokhtar ;
Kahoo, Amin Roshandel .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (01) :382-388
[4]  
Anvari R, 2017, 2017 3RD IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), P164, DOI 10.1109/ICSPIS.2017.8311609
[5]   Seismic Random Noise Attenuation Using DARE U-Net [J].
Banjade, Tara P. ;
Zhou, Cong ;
Chen, Hui ;
Li, Hongxing ;
Deng, Juzhi ;
Zhou, Feng ;
Adhikari, Rajan .
REMOTE SENSING, 2024, 16 (21)
[6]   Pyseistr: A Python']Python Package for Structural Denoising and Interpolation of Multichannel Seismic Data [J].
Chen, Yangkang ;
Savvaidis, Alexandros ;
Fomel, Sergey ;
Chen, Yunfeng ;
Saad, Omar M. ;
Oboue, Yapo Abole Serge Innocent ;
Zhang, Quan ;
Chen, Wei .
SEISMOLOGICAL RESEARCH LETTERS, 2023, 94 (03) :1703-1714
[7]   Empirical Low-Rank Approximation for Seismic Noise Attenuation [J].
Chen, Yangkang ;
Zhou, Yatong ;
Chen, Wei ;
Zu, Shaohuan ;
Huang, Weilin ;
Zhang, Dong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (08) :4696-4711
[8]   Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method [J].
Chen, Yangkang ;
Zhang, Dong ;
Jin, Zhaoyu ;
Chen, Xiaohong ;
Zu, Shaohuan ;
Huang, Weilin ;
Gan, Shuwei .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 206 (03) :1695-1717
[9]   An open-source Matlab code package for improved rank-reduction 3D seismic data denoising and reconstruction [J].
Chen, Yangkang ;
Huang, Weilin ;
Zhang, Dong ;
Chen, Wei .
COMPUTERS & GEOSCIENCES, 2016, 95 :59-66
[10]   Tensor Nuclear Norm-Based Low-Rank Approximation With Total Variation Regularization [J].
Chen, Yongyong ;
Wang, Shuqin ;
Zhou, Yicong .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (06) :1364-1377