Task offloading and resource allocation for multi-UAV asset edge computing with multi-agent deep reinforcement learning

被引:0
|
作者
Zakaryia, Samah A. [1 ]
Meaad, Mohamed [2 ]
Nabil, Tamer [3 ]
Hussein, Mohamed K. [2 ]
机构
[1] Fac Comp & Informat, Dept Comp Sci, Ismailia, Egypt
[2] Suez Canal Univ, Comp Sci Dept, Ismailia, Egypt
[3] Suez Canal Univ, Basic Sci Dept, Ismailia, Egypt
关键词
Mobile edge computing; Task offloading; Multi-UAV network; Multi-agent deep reinforcement learning; Distance to task location and capability match;
D O I
10.1007/s00607-025-01472-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Mobile edge computing (MEC) has emerged as a key solution for addressing the demands of computation-intensive network services by providing computational resources at the network edge, thereby minimizing service delays. Leveraging their flexible deployment, wide coverage, and reliable wireless communication, unmanned aerial vehicles (UAVs) have been integrated into MEC systems to enhance performance. This paper investigates the task offloading problem in a Multi-UAV-assisted MEC environment and proposes a collaborative optimization framework that integrates the Distance to Task Location and Capability Match (DTLCM) mechanism with a Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm. Unlike traditional task priority-based offloading schemes, the proposed approach ensures optimal UAV selection based on both computational capability and spatial proximity. The system gain is defined in terms of energy efficiency and task delay with the optimization formulated as a mixed-integer programming problem. To efficiently solve this complex problem, a Multi-Agent Deep Reinforcement Learning framework is employed, combining MADDPG with DTLCM to jointly optimize UAV trajectories, task offloading decisions, computational resource allocation, and communication resource management. Comprehensive simulations demonstrate that the proposed MADDPG-DTLCM framework significantly outperforms four state-of-the-art methods (MADDPG-DTLCM,MADQN, MADDPG without DTLCM, and Greedy offloading), achieving 18% higher task completion rates and 12% lower latency under varying network conditions, particularly in high-user-density scenarios with UAV collaboration.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Blockchain-based Dependable Task Offloading and Resource Allocation for IIoT via Multi-Agent Deep Reinforcement Learning
    Zhang, Peifeng
    Xu, Chi
    Xia, Changqing
    Jin, Xi
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [22] On Multi-Task Learning for Energy Efficient Task Offloading in Multi-UAV Assisted Edge Computing
    Poursiami, Hamed
    Jabbari, Bijan
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [23] Cooperative Task Offloading and Block Mining in Blockchain-Based Edge Computing With Multi-Agent Deep Reinforcement Learning
    Nguyen, Dinh C.
    Ding, Ming
    Pathirana, Pubudu N.
    Seneviratne, Aruna
    Li, Jun
    Poor, H. Vincent
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (04) : 2021 - 2037
  • [24] Heterogeneous multi-agent deep reinforcement learning based low carbon emission task offloading in mobile edge computing
    Zhou, Xiongjie
    Guan, Xin
    Sun, Di
    Zhang, Xiaoguang
    Zhang, Zhaogong
    Ohtsuki, Tomoaki
    COMPUTER COMMUNICATIONS, 2025, 234
  • [25] Multi-Agent Deep Reinforcement Learning for Cooperative Offloading in Cloud-Edge Computing
    Suzuki, Akito
    Kobayashi, Masahiro
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3660 - 3666
  • [26] Task Offloading and Resource Allocation in NOMA-VEC: A Multi-Agent Deep Graph Reinforcement Learning Algorithm
    Hu, Yonghui
    Jin, Zuodong
    Qi, Peng
    Tao, Dan
    CHINA COMMUNICATIONS, 2024, 21 (08) : 79 - 88
  • [27] Collaborative Task Offloading Optimization for Satellite Mobile Edge Computing Using Multi-Agent Deep Reinforcement Learning
    Zhang, Hangyu
    Zhao, Hongbo
    Liu, Rongke
    Kaushik, Aryan
    Gao, Xiangqiang
    Xu, Shenzhan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (10) : 15483 - 15498
  • [28] Joint Task Offloading and Resource Allocation in Multi-UAV Multi-Server Systems: An Attention-Based Deep Reinforcement Learning Approach
    Wu, Guohua
    Liu, Zelin
    Fan, Mingfeng
    Wu, Keyu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (08) : 11964 - 11978
  • [29] Multi-agent reinforcement learning for task offloading with hybrid decision space in multi-access edge computing
    Wang, Ji
    Zhang, Miao
    Yin, Quanjun
    Yin, Lujia
    Peng, Yong
    AD HOC NETWORKS, 2025, 166
  • [30] Multi-agent deep reinforcement learning for computation offloading in cooperative edge network
    Wu, Pengju
    Guan, Yepeng
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, : 567 - 591