共 149 条
- [71] Lee S., Lee J.W., Yeom J.S., Kim K.-J., Kim H.-J., Chung S.K., Et al., A practical MRI grading system for lumbar foraminal stenosis, Am J Roentgenol, 194, pp. 1095-1098, (2010)
- [72] Lee S., Jung J.-Y., Mahatthanatrakul A., Kim J.-S., Artificial intelligence in spinal imaging and patient care: a review of recent advances, Neurospine, 21, (2024)
- [73] Lee A., Ong W., Makmur A., Ting Y.H., Tan W.C., Lim S.W.D., Et al., Applications of artificial intelligence and machine learning in spine MRI, Bioengineering, 11, (2024)
- [74] Lehnen N.C., Haase R., Faber J., Ruber T., Vatter H., Radbruch A., Et al., Detection of degenerative changes on MR images of the lumbar spine with a convolutional neural network: a feasibility study, Diagnostics, 11, (2021)
- [75] Lewandrowski K.-U., Muraleedharan N., Eddy S.A., Sobti V., Reece B.D., Leon J.F.R., Et al., Reliability analysis of deep learning algorithms for reporting of routine lumbar MRI scans, Int J Spine Surg, 14, pp. S98-S107, (2020)
- [76] LewandrowskI K.-U., Muraleedharan N., Eddy S.A., Sobti V., Reece B.D., Ramirez Leon J.F., Et al., Feasibility of deep learning algorithms for reporting in routine spine magnetic resonance imaging, Int J Spine Surg, 14, pp. S86-S97, (2020)
- [77] Li T., Wei B., Cong J., Li X., Li S., S 3 egANet: 3D spinal structures segmentation via adversarial nets, IEEE Access, 8, pp. 1892-1901, (2019)
- [78] Li H., Luo H., Huan W., Shi Z., Yan C., Wang L., Et al., Automatic lumbar spinal MRI image segmentation with a multi-scale attention network, Neural Comput Appl, 33, pp. 11589-11602, (2021)
- [79] Liawrungrueang W., Kim P., Kotheeranurak V., Jitpakdee K., Sarasombath P., Automatic detection, classification, and grading of lumbar intervertebral disc degeneration using an artificial neural network model, Diagnostics, 13, (2023)
- [80] Lin L., Tao X., Pang S., Su Z., Lu H., Li S., Et al., Multiple axial spine indices estimation via dense enhancing network with cross-space distance-preserving regularization, IEEE J Biomed Health Inform, 24, pp. 3248-3257, (2020)