Transformer-less switched-capacitor-based multilevel inverters (TL-SCMLIs) are increasingly preferred for photovoltaic (PV) applications due to their voltage boosting capability, high efficiency, reduced dv/dt stress, and lower cost. However, existing SC-based multi-level inverters often require more components, suffer from leakage currents, have lower boost gain capability, have higher PU total standing voltage, and exhibit lower efficiency. To address these challenges, this paper proposes a novel seven-level switched-capacitor (SC)-based TL-MLI with higher voltage boosting gain and a common ground (CG) configuration for improved performance in grid-tied PV applications. A proportional-integral (PI) controller is designed for the grid-tied seven-level PV inverter, and its performance is evaluated through simulation studies and hardware-in-the-loop (HIL) experimental verification. Finally, a detailed comparative analysis with existing multi-level inverters highlights the proposed seven-level inverter's advantages, including leakage current reduction, high boost gain, lower cost, lower PU total standing voltage, lower voltage stress, lower peak inverse voltage, and improved efficiency. The total harmonic distortion (THD) of the grid current is less than 5% for the proposed grid-tied seven-level inverter.