Small Peptides Inhibition of SARS-CoV-2 Mpro via Computational Approaches

被引:0
作者
Nguyen, Trung Hai [1 ,2 ]
Le, Thi Thuy Huong [3 ,4 ]
Pham, Minh Quan [3 ,4 ]
Phung, Huong Thi Thu [5 ]
Ngo, Son Tung [1 ,2 ]
机构
[1] Ton Duc Thang Univ, Inst Adv Study Technol, Lab Biophys, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Pharm, Ho Chi Minh City, Vietnam
[3] Vietnam Acad Sci & Technol, Grad Univ Sci & Technol, Hanoi, Vietnam
[4] Vietnam Acad Sci & Technol, Inst Nat Prod Chem, Hanoi, Vietnam
[5] Nguyen Tat Thanh Univ, NTT Hitech Inst, Ho Chi Minh City, Vietnam
关键词
SARS-CoV-2; Mpro; tetrapeptides; inhibitors; ADME; COVID-19; MAIN PROTEASE; SCORING FUNCTION; AUTODOCK; DOCKING; DRUGS; MECHANISM; ACCURACY; BINDING;
D O I
10.2174/0115701646362106250320080525
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background The application of molecular docking and Machine Learning (ML) calculations in evaluating peptide-based inhibitors allows for the systematic investigation of sequence-activity relationships, guiding the design of potent peptides with optimal binding characteristics.Objective This study aimed to screen short peptides using computational simulation to identify promising inhibitors against SARS-CoV-2 Mpro.Methods Short peptides were screened using molecular docking to identify promising candidates. The ML model was applied to confirm the docking outcome. The PreADME server was then used to analyze the HIA and toxicity of the peptides.Results 168,420 short peptides were docked to identify 5 tetrapeptides with promising docking scores against SARS-CoV-2 Mpro including, PYPW, WWPF, WWPY, HYPW, and WYPF. The obtained results were also confirmed via ML calculations. The analyses highlighted the importance of residues Thr190 and Asn142 that are crucial in the binding process. All of top-lead peptides adopt low toxicity and can be absorbed via the human intestine. They can also cross the blood brain barier.Conclusion This work enhances our understanding of Mpro interactions and informs future ligand design, contributing to the development of therapeutic strategies against COVID-19.
引用
收藏
页码:904 / 910
页数:7
相关论文
共 55 条
[1]   Discovery of potent inhibitors for SARS-CoV-2's main protease by ligand-based/structure-based virtual screening, MD simulations, and binding energy calculations [J].
Abu-Saleh, Abd Al-Aziz A. ;
Awad, Ibrahim E. ;
Yadav, Arpita ;
Poirier, Raymond A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (40) :23099-23106
[2]   Advances in the Development of SARS-CoV-2 Mpro Inhibitors [J].
Agost-Beltran, Laura ;
de la Hoz-Rodriguez, Sergio ;
Bou-Iserte, Lledo ;
Rodriguez, Santiago ;
Fernandez-de-la-Pradilla, Adrian ;
Gonzalez, Florenci V. .
MOLECULES, 2022, 27 (08)
[3]   Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2 [J].
Al-Khafaji, Khattab ;
AL-DuhaidahawiL, Dunya ;
Taskin Tok, Tugba .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2021, 39 (09) :3387-3395
[4]   Hepatitis C virus NS3/4A inhibitors and other drug-like compounds as covalent binders of SARS-CoV-2 main protease [J].
Andi, Babak ;
Kumaran, Desigan ;
Kreitler, Dale F. ;
Soares, Alexei S. ;
Keereetaweep, Jantana ;
Jakoncic, Jean ;
Lazo, Edwin O. ;
Shi, Wuxian ;
Fuchs, Martin R. ;
Sweet, Robert M. ;
Shanklin, John ;
Adams, Paul D. ;
Schmidt, Jurgen G. ;
Head, Martha S. ;
McSweeney, Sean .
SCIENTIFIC REPORTS, 2022, 12 (01)
[5]   The Synergistic Use of Computation, Chemistry and Biology to Discover Novel Peptide-Based Drugs: The Time is Right [J].
Audie, J. ;
Boyd, C. .
CURRENT PHARMACEUTICAL DESIGN, 2010, 16 (05) :567-582
[6]   ChemMine tools: an online service for analyzing and clustering small molecules [J].
Backman, Tyler W. H. ;
Cao, Yiqun ;
Girke, Thomas .
NUCLEIC ACIDS RESEARCH, 2011, 39 :W486-W491
[7]   Potential SARS-CoV-2 main protease inhibitors [J].
Banerjee, Riddhidev ;
Perera, Lalith ;
Tillekeratne, L. M. Viranga .
DRUG DISCOVERY TODAY, 2021, 26 (03) :804-816
[8]  
Bergstra J., 2013, P 30 INT C MACH LEAR, P115
[9]   Discovery of SARS-CoV-2 Mpro peptide inhibitors from modelling substrate and ligand binding [J].
Chan, H. T. Henry ;
Moesser, Marc A. ;
Walters, Rebecca K. ;
Malla, Tika R. ;
Twidale, Rebecca M. ;
John, Tobias ;
Deeks, Helen M. ;
Johnston-Wood, Tristan ;
Mikhailov, Victor ;
Sessions, Richard B. ;
Dawson, William ;
Salah, Eidarus ;
Lukacik, Petra ;
Strain-Damerell, Claire ;
Owen, C. David ;
Nakajima, Takahito ;
Swiderek, Katarzyna ;
Lodola, Alessio ;
Moliner, Vicent ;
Glowacki, David R. ;
Spencer, James ;
Walsh, Martin A. ;
Schofield, Christopher J. ;
Genovese, Luigi ;
Shoemark, Deborah K. ;
Mulholland, Adrian J. ;
Duarte, Fernanda ;
Morris, Garrett M. .
CHEMICAL SCIENCE, 2021, 12 (41) :13686-13703
[10]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794