Linear and Nonlinear Scalarization Methods for Vector Optimization Problems with Variable Ordering Structures

被引:0
作者
Jian-Wen Peng [1 ]
Wen-Bin Wei [1 ]
Refail Kasimbeyli [2 ]
机构
[1] School of Mathematical Sciences, Chongqing Normal University, Shapingba, Chongqing
[2] Department of Industrial Engineering, Eskisehir Technical University, Eskisehir
[3] UNEC Mathematical Modeling and Optimization Research Center, Azerbaijan State University of Economics, Baku
基金
中国国家自然科学基金;
关键词
Coradiant set; Linear scalarization; Nonlinear scalarization; Variable ordering structure; Vector optimization;
D O I
10.1007/s10957-025-02662-z
中图分类号
学科分类号
摘要
This paper investigates linear and nonlinear scalarization methods for vector optimization problems with variable ordering structures (VOS). Firstly, we introduce the concepts of ε-efficient elements and weakly ε-efficient elements of a set with VOSs given by coradiant sets. Secondly we derive characterization theorems for weakly ε-efficient solutions in the sense of linear scalarization. Then, we establish characterization theorems for weakly ε-efficient solutions in the sense of nonlinear scalarization via the Hirriart-Urruty nonlinear functions and the functions defined via the Kasimbeyli’s augmented dual cones. Finally, we establish nonlinear scalarization theorems for the weakly ε-efficient elements of a set via the augmented dual cones approach. The results of this paper generalize the corresponding results in the literature. © The Author(s) 2025.
引用
收藏
相关论文
共 41 条
  • [1] Bao T.Q., Mordukhovich B.S., Soubeyran A., Tammer C., Vector optimization with domination structures: variational principles and applications, Set-Valued Var. Anal, 30, pp. 695-729, (2022)
  • [2] Bolintineanu S., Vector variational principles
  • [3] ϵ-efficiency and scalar stationarity, J. Convex Anal, 8, pp. 71-86, (2001)
  • [4] Chen G.Y., Yang X.Q., Characterizations of variable domination structures via nonlinear scalarization, J. Optim. Theory Appl, 112, pp. 97-110, (2002)
  • [5] Chen G.Y., Huang X.X., Yang X.Q., Vector Optimization: Set-Valued and Variational Analysis, (2005)
  • [6] Chicco M., Mignanego F., Pusillo L., Tijs S., Vector optimization problems via improvement sets, J. Optim. Theory Appl, 150, pp. 516-529, (2011)
  • [7] Durea M., Strugariu R., Tammer C., On set-valued optimization problems with VOS, J. Glob. Optim, 61, pp. 745-767, (2015)
  • [8] Eichfelder G., Kasimbeyli R., Properly optimal elements in vector optimization with VOSs, J. Glob. Optim, 60, pp. 689-712, (2014)
  • [9] Eichfelder G., Gerlach T., Characterization of properly optimal elements with VOSs, Optim, 65, pp. 571-588, (2016)
  • [10] Eichfelder G., Pilecka M., Set approach for set optimization with VOS part I: set relations and relationship to vector approach, J. Optim. Theory Appl, 171, pp. 931-946, (2016)