Reading the repertoire: Progress in adaptive immune receptor analysis using machine learning

被引:0
作者
O'Donnell, Timothy J. [1 ]
Kanduri, Chakravarthi [2 ,3 ]
Isacchini, Giulio [1 ]
Limenitakis, Julien P. [1 ]
Brachman, Rebecca A. [1 ,4 ]
Alvarez, Raymond A. [1 ]
Haff, Ingrid H. [5 ]
Sandve, Geir K. [2 ,3 ]
Greiff, Victor [1 ,6 ,7 ]
机构
[1] Imprint Labs LLC, New York, NY 10017 USA
[2] Univ Oslo, Dept Informat, Oslo, Norway
[3] Univ Oslo, UiO RealArt Convergence Environm, Oslo, Norway
[4] Cornell Univ, Cornell Tech, New York, NY USA
[5] Univ Oslo, Dept Math, N-0371 Oslo, Norway
[6] Univ Oslo, Dept Immunol, Oslo, Norway
[7] Oslo Univ Hosp, Oslo, Norway
关键词
T-CELL; PROTEIN; ANTIBODIES; DEEP; SELECTION; FEATURES; EVOLUTIONARY; PREDICTIONS; POTENTIALS; GENERATION;
D O I
10.1016/j.cels.2024.11.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The adaptive immune system holds invaluable information on past and present immune responses in the form of B and T cell receptor sequences, but we are limited in our ability to decode this information. Machine learning approaches are under active investigation for a range of tasks relevant to understanding and manipulating the adaptive immune receptor repertoire, including matching receptors to the antigens they bind, generating antibodies or T cell receptors for use as therapeutics, and diagnosing disease based on patient repertoires. Progress on these tasks has the potential to substantially improve the development of vaccines, therapeutics, and diagnostics, as well as advance our understanding of fundamental immunological principles. We outline key challenges for the field, highlighting the need for software benchmarking, targeted largescale data generation, and coordinated research efforts.
引用
收藏
页码:1168 / 1189
页数:22
相关论文
共 309 条
  • [1] The Patent and Literature Antibody Database (PLAbDab): an evolving reference set of functionally diverse, literature-annotated antibody sequences and structures
    Abanades, Brennan
    Olsen, Tobias H.
    Raybould, Matthew I. J.
    Aguilar-Sanjuan, Broncio
    Wong, Wing Ki
    Georges, Guy
    Bujotzek, Alexander
    Deane, Charlotte M.
    [J]. NUCLEIC ACIDS RESEARCH, 2023, 52 (D1) : D545 - D551
  • [2] ImmuneBuilder: Deep-Learning models for predicting the structures of immune proteins
    Abanades, Brennan
    Wong, Wing Ki
    Boyles, Fergus
    Georges, Guy
    Bujotzek, Alexander
    Deane, Charlotte M.
    [J]. COMMUNICATIONS BIOLOGY, 2023, 6 (01) : 575
  • [3] Precursor Frequency and Affinity Determine B Cell Competitive Fitness in Germinal Centers, Tested with Germline-Targeting HIV Vaccine Immunogens
    Abbott, Robert K.
    Lee, Jeong Hyun
    Menis, Sergey
    Skog, Patrick
    Rossi, Meghan
    Ota, Takayuki
    Kulp, Daniel W.
    Bhullar, Deepika
    Kalyuzhniy, Oleksandr
    Havenar-Daughton, Colin
    Schief, William R.
    Nemazee, David
    Crotty, Shane
    [J]. IMMUNITY, 2018, 48 (01) : 133 - +
  • [4] Abramson J., 2024, Nature, V3, P1
  • [5] Abu-Shmais AA, 2023, bioRxiv, DOI [10.1101/2023.09.06.556442, 10.1101/2023.09.06.556442, DOI 10.1101/2023.09.06.556442]
  • [6] Epistasis in a Fitness Landscape Defined by Antibody-Antigen Binding Free Energy
    Adams, Rhys M.
    Kinney, Justin B.
    Walczak, Aleksandra M.
    Mora, Thierry
    [J]. CELL SYSTEMS, 2019, 8 (01) : 86 - +
  • [7] RosettaAntibodyDesign (RAbD): A general framework for computational antibody design
    Adolf-Bryfogle, Jared
    Kalyuzhniy, Oleks
    Kubitz, Michael
    Weitzner, Brian D.
    Hu, Xiaozhen
    Adachi, Yumiko
    Schief, William R.
    Dunbrack, Roland L., Jr.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (04)
  • [8] OpenFold: retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization
    Ahdritz, Gustaf
    Bouatta, Nazim
    Floristean, Christina
    Kadyan, Sachin
    Xia, Qinghui
    Gerecke, William
    O'Donnell, Timothy J.
    Berenberg, Daniel
    Fisk, Ian
    Zanichelli, Niccolo
    Zhang, Bo
    Nowaczynski, Arkadiusz
    Wang, Bei
    Stepniewska-Dziubinska, Marta M.
    Zhang, Shang
    Ojewole, Adegoke
    Guney, Murat Efe
    Biderman, Stella
    Watkins, Andrew M.
    Ra, Stephen
    Lorenzo, Pablo Ribalta
    Nivon, Lucas
    Weitzner, Brian
    Ban, Yih-En Andrew
    Chen, Shiyang
    Zhang, Minjia
    Li, Conglong
    Song, Shuaiwen Leon
    He, Yuxiong
    Sorger, Peter K.
    Mostaque, Emad
    Zhang, Zhao
    Bonneau, Richard
    AlQuraishi, Mohammed
    [J]. NATURE METHODS, 2024, 21 (08) : 1514 - 1524
  • [9] Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies
    Akbar, Rahmad
    Bashour, Habib
    Rawat, Puneet
    Robert, Philippe A.
    Smorodina, Eva
    Cotet, Tudor-Stefan
    Flem-Karlsen, Karine
    Frank, Robert
    Mehta, Brij Bhushan
    Mai Ha Vu
    Zengin, Talip
    Gutierrez-Marcos, Jose
    Lund-Johansen, Fridtjof
    Andersen, Jan Terje
    Greiff, Victor
    [J]. MABS, 2022, 14 (01)
  • [10] A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding
    Akbar, Rahmad
    Robert, Philippe A.
    Pavlovic, Milena
    Jeliazkov, Jeliazko R.
    Snapkov, Igor
    Slabodkin, Andrei
    Weber, Cedric R.
    Scheffer, Lonneke
    Miho, Enkelejda
    Haff, Ingrid Hobaek
    Haug, Dag Trygve Tryslew
    Lund-Johansen, Fridtjof
    Safonova, Yana
    Sandve, Geir K.
    Greiff, Victor
    [J]. CELL REPORTS, 2021, 34 (11):