Enhancing teacher recruitment and retention through decision-making models in education systems

被引:0
作者
Liu, Tong [1 ,2 ]
Li, Wenjun [3 ]
机构
[1] Hanjiang Normal Univ, Party Comm Org Dept, Shiyan 442200, Peoples R China
[2] Shinhan Univ, Dept Comprehens Educ, Uijongbu 100032, Gyeonggi Provin, South Korea
[3] Hanjiang Normal Univ, Coll Hist Culture & Tourism, Shiyan 442200, Peoples R China
关键词
Teacher recruitment; Teacher retention; Education systems; Multi-criteria decision-making; Intuitionistic fuzzy sets; Uncertainty; Imprecision; Entropy method; FUZZY; OPERATORS;
D O I
10.1038/s41598-025-00161-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Teacher recruitment and retention remain critical challenges for education systems worldwide, with far-reaching implications for educational quality and institutional sustainability. Traditional approaches often fail to address the complexity of these issues, neglecting the interplay of multiple conflicting criteria and the inherent uncertainty in decision-making. This gap necessitates advanced decision-making frameworks that can effectively evaluate and prioritize strategies for improving teacher recruitment and retention. To bridge this gap, this study introduces a novel decision-making framework integrating intuitionistic fuzzy sets (IFSs) to handle uncertainty more effectively. The Entropy method is employed to compute objective weights, while the ranking comparison (RANCOM) method determines subjective weights, ensuring a balanced consideration of qualitative and quantitative factors. The weighted aggregated sum product assessment (WASPAS) method is then applied. The framework is validated through sensitivity analysis to assess its robustness and comparative analysis to establish its superiority over traditional methods. The results identify the Golden Ticket Salary Plan \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\S <^>{A}_{\P }}_{5}$$\end{document} as the optimal strategy, achieving the highest ranking (0.3654), followed by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\S <^>{A}_{\P }}_{3}$$\end{document} (0.3487), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\S <^>{A}_{\P }}_{5}$$\end{document} (0.3485), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\S <^>{A}_{\P }}_{4}$$\end{document} (0.3400), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\S <^>{A}_{\P }}_{1}$$\end{document} (0.2976) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\S <^>{A}_{\P }}_{2}$$\end{document} (0.2707). The ranking order for the strategies is as follows: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\S <^>{A}_{\P }}_{5} \succ {\S <^>{A}_{\P }}_{3} \succ {\S <^>{A}_{\P }}_{6} \succ {\S <^>{A}_{\P }}_{4} \succ {\S <^>{A}_{\P }}_{1} \succ {\S <^>{A}_{\P }}_{2}$$\end{document}. These findings highlight the significance of structured decision-making in optimizing teacher workforce management. This study provides valuable insights for policymakers and administrators, ensuring sustainable advancements in teacher workforce management.
引用
收藏
页数:28
相关论文
共 78 条
[1]   Continuous intuitionistic fuzzy sets (CINFUS) and their AHP&TOPSIS extension: Research proposals evaluation for grant funding [J].
Alkan, Nursah ;
Kahraman, Cengiz .
APPLIED SOFT COMPUTING, 2023, 145
[2]   A multi-criteria decision-making (MCDM) approach for data-driven distance learning recommendations [J].
Alshamsi, Aysha Meshaal ;
El-Kassabi, Hadeel ;
Serhani, Mohamed Adel ;
Bouhaddioui, Chafik .
EDUCATION AND INFORMATION TECHNOLOGIES, 2023, 28 (08) :10421-10458
[3]   A novel approach for multi-criteria decision making: Extending the WASPAS method using decomposed fuzzy sets [J].
Arslan, Ozlem ;
Cebi, Selcuk .
COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 196
[4]   INTUITIONISTIC FUZZY-SETS [J].
ATANASSOV, KT .
FUZZY SETS AND SYSTEMS, 1986, 20 (01) :87-96
[5]  
Bagal D K., 2021, Next Generation Materials and Processing Technologies, P475
[6]  
Biswas S., 2025, Spectrum Oper. Res, V2, P113
[7]   Assessing the level of digital maturity of enterprises in the Central and Eastern European countries using the MCDM and Shannon's entropy methods [J].
Brodny, Jaroslaw ;
Tutak, Magdalena .
PLOS ONE, 2021, 16 (07)
[8]   HANDLING MULTICRITERIA FUZZY DECISION-MAKING PROBLEMS BASED ON VAGUE SET-THEORY [J].
CHEN, SM ;
TAN, JM .
FUZZY SETS AND SYSTEMS, 1994, 67 (02) :163-172
[9]  
Chong S. W., 2024, Educ. Endowment Found., P456
[10]  
Chu L., 2023, Center Reinventing Public Educ., V2023, P56