SegFormer3D: an Efficient Transformer for 3D Medical Image Segmentation

被引:5
|
作者
Perera, Shehan [1 ]
Navard, Pouyan [1 ]
Yilmaz, Alper [1 ]
机构
[1] Ohio State Univ, Photogrammetr Comp Vis Lab, Columbus, OH 43210 USA
关键词
D O I
10.1109/CVPRW63382.2024.00503
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The adoption of Vision Transformers (ViTs) based architectures represents a significant advancement in 3D Medical Image (MI) segmentation, surpassing traditional Convolutional Neural Network (CNN) models by enhancing global contextual understanding. While this paradigm shift has significantly enhanced 3D segmentation performance, state-of-the-art architectures require extremely large and complex architectures with large scale computing resources for training and deployment. Furthermore, in the context of limited datasets, often encountered in medical imaging, larger models can present hurdles in both model generalization and convergence. In response to these challenges and to demonstrate that lightweight models are a valuable area of research in 3D medical imaging, we present SegFormer3D, a hierarchical Transformer that calculates attention across multiscale volumetric features. Additionally, SegFormer3D avoids complex decoders and uses an all-MLP decoder to aggregate local and global attention features to produce highly accurate segmentation masks. The proposed memory efficient Transformer preserves the performance characteristics of a significantly larger model in a compact design. SegFormer3D democratizes deep learning for 3D medical image segmentation by offering a model with 33x less parameters and a 13x reduction in GFLOPS compared to the current state-of-the-art (SOTA). We benchmark SegFormer3D against the current SOTA models on three widely used datasets Synapse, BRaTs, and ACDC, achieving competitive results. Code: https://github.com/OSUPCVLab/SegFormer3D.git
引用
收藏
页码:4981 / 4988
页数:8
相关论文
共 50 条
  • [41] Medical image segmentation using 3D MRI data
    Voronin, V.
    Marchuk, V.
    Semenishchev, E.
    Cen, Yigang
    Agaian, S.
    MOBILE MULTIMEDIA/IMAGE PROCESSING, SECURITY, AND APPLICATIONS 2017, 2017, 10221
  • [42] Hybrid segmentation framework for 3D medical image analysis
    Chen, T
    Metaxas, D
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 1421 - 1432
  • [43] 3D Medical image segmentation using parallel transformers
    Yan, Qingsen
    Liu, Shengqiang
    Xu, Songhua
    Dong, Caixia
    Li, Zongfang
    Shi, Javen Qinfeng
    Zhang, Yanning
    Dai, Duwei
    PATTERN RECOGNITION, 2023, 138
  • [44] 3D Level Set Model for Medical Image Segmentation
    Yin, Guisheng
    Lin, Ying
    Wang, Yuhua
    2009 INTERNATIONAL CONFERENCE ON FUTURE BIOMEDICAL INFORMATION ENGINEERING (FBIE 2009), 2009, : 268 - 271
  • [45] 3D MEDICAL IMAGE INTERACTION AND SEGMENTATION USING KINECT
    Chang, Cheng
    Gao, Yi
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 498 - 501
  • [46] Medical Image Segmentation by Improved 3D Adaptive Thresholding
    Kim, Cheol-Hwan
    Lee, Yun-Jung
    2015 INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC), 2015, : 263 - 265
  • [47] A Separate 3D Convolutional Neural Network Architecture for 3D Medical Image Semantic Segmentation
    Dong, Shidu
    Liu, Zhi
    Wang, Huaqiu
    Zhang, Yihao
    Cui, Shaoguo
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (08) : 1705 - 1716
  • [48] Efficient semiautomatic segmentation of 3D objects in medical images
    Schenk, A
    Prause, G
    Peitgen, HO
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2000, 2000, 1935 : 186 - 195
  • [49] LW-CTrans: A lightweight hybrid network of CNN and Transformer for 3D medical image segmentation
    Kuang, Hulin
    Wang, Yahui
    Tana, Xianzhen
    Yang, Jialin
    Sun, Jiarui
    Liu, Jin
    Qiu, Wu
    Zhang, Jingyang
    Zhang, Jiulou
    Yang, Chunfeng
    Wang, Jianxin
    Chen, Yang
    MEDICAL IMAGE ANALYSIS, 2025, 102
  • [50] Hybrid transformer-CNN with boundary-awareness network for 3D medical image segmentation
    He, Jianfei
    Xu, Canhui
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28542 - 28554