Trace Inequalities for Measurable Operators Affiliated to a von Neumann Algebra

被引:0
作者
A. M. Bikchentaev [1 ]
机构
[1] Kazan Federal University, Kazan
关键词
Hilbert space; hyponormal operator; inequality; linear operator; projection; trace; von Neumann algebra;
D O I
10.3103/S1066369X25700082
中图分类号
学科分类号
摘要
Let be a trace on von Neumann algebra,, and,. Then. Let be a faithful normal semifinite trace on, be the -algebra of all -measurable operators. If and with, then. An operator is Hermitian if. Let positive operators be invertible in and. If Y,, then. Let an operator be hyponormal and be its Cartesian decomposition. If (i) or (ii) and, then is normal. © Allerton Press, Inc. 2025.
引用
收藏
页码:90 / 95
页数:5
相关论文
共 17 条
  • [1] Takesaki M., Theory of Operator Algebras I, Encyclopaedia of Mathematical Sciences, 124, (2002)
  • [2] Dodds P.G., de Pagter B., Sukochev F.A., Noncommutative Integration and Operator Theory, Progress in Mathematics, 349, (2023)
  • [3] Bikchentaev A.M., Kittaneh F., Moslehian M.S., Seo Y., Trace Inequalities: For Matrices and Hilbert Space Operators, Forum for Interdisciplinary Mathematics, (2024)
  • [4] Akemann C.A., Anderson J., Pedersen G., Triangle inequalities in operator algebras, Linear Multilinear Algebra, 11, pp. 167-178, (1982)
  • [5] Bikchentaev A.M., Trace and differences of idempotents in C^{*}-algebras, Math. Notes, 105, pp. 641-648, (2019)
  • [6] Haagerup U., Kadison R.V., Pedersen G.K., Means of unitary operators, revisited, Math. Scand, 100, pp. 193-197, (2007)
  • [7] Brown L.G., Kosaki H., Jensen’s inequality in semi-finite von Neumann algebras, J. Oper. Theory, 23, pp. 3-19, (1990)
  • [8] Kosaki H., On the continuity of the map φ |φ| from the predual of a W^{*}-algebra, J. Funct. Anal, 59, pp. 123-131, (1984)
  • [9] Bikchentaev A.M., Concerning the theory of τ-measurable operators affiliated to a semifinite von Neumann algebra, Math. Notes, 98, pp. 382-391, (2015)
  • [10] Tembo, “Invertibility in the algebra of τ-measurable operators,” in Operator Algebras, Operator Theory and Applications, Ed. by J. J. Grobler, L. E. Labuschagne, and M. Möller, Operator Theory: Advances and Applications, Vol. 195 (Birkhäuser, Basel, 2010, pp. 245-256