Personalized Course Selection Optimization Using an Ising Machine

被引:0
作者
Ota, Takeru [1 ]
Fukada, Keisuke [1 ]
Togawa, Nozomu [1 ,2 ]
机构
[1] Waseda Univ, Dept Comp Sci & Commun Engn, Tokyo, Japan
[2] Quanmatic Inc, Tokyo, Japan
来源
2024 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING, QCE, VOL 2 | 2024年
关键词
combinatorial optimization problem; course selection problem; Ising machine; Ising model; QUBO;
D O I
10.1109/QCE60285.2024.10340
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Many students spend a lot of time and effort manually selecting courses, due to the large number of candidate courses offered by universities. We regard course selection as a combinatorial optimization problem and define it as an NP hard problem. In this paper, we propose a QUBO (Quadratic Unconstrained Binary Optimization) formulation for solving the course selection problem, and solve the problem with an Ising machine. Experimental evaluations demonstrate that for the instance with the largest number of courses, our approach solves a personalized course selection problem 20X times faster than the conventional simulated annealing.
引用
收藏
页码:430 / 431
页数:2
相关论文
共 50 条
  • [41] Overdamped Ising machine with stochastic resonance phenomena in large noise condition
    Liao, Zhiqiang
    Ma, Kaijie
    Sarker, Md Shamim
    Yamahara, Hiroyasu
    Seki, Munetoshi
    Tabata, Hitoshi
    NONLINEAR DYNAMICS, 2024, 112 (11) : 8967 - 8984
  • [42] MEMS Oscillators-Network-Based Ising Machine with Grouping Method
    Deng, Yi
    Zhang, Yi
    Zhang, Xinyuan
    Jiang, Yang
    Chen, Xi
    Yang, Yansong
    Tong, Xin
    Cai, Yao
    Liu, Wenjuan
    Sun, Chengliang
    Shang, Dashan
    Wang, Qing
    Yu, Hongyu
    Wang, Zhongrui
    ADVANCED SCIENCE, 2024, 11 (26)
  • [43] NEAR-OPTIMAL RESAMPLING IN PARTICLE FILTERS USING THE ISING ENERGY MODEL
    Rahman, Muhammed Tahsin
    Javad-Kalbasi, Mohammad
    Valaee, Shahrokh
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5464 - 5468
  • [44] Efficient Ising Model Mapping for Induced Subgraph Isomorphism Problems Using Ising Machines
    Yoshimura, Natsuhito
    Tawada, Masashi
    Tanaka, Shu
    Arai, Junya
    Yagi, Satoshi
    Uchiyama, Hiroyuki
    Togawa, Nozomu
    2019 IEEE 9TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE-BERLIN), 2019, : 227 - 232
  • [45] A Multiple Coefficients Trial Method to Solve Combinatorial Optimization Problems for Simulated-annealing-based Ising Machines
    Takehara, Kota
    Oku, Daisuke
    Matsuda, Yoshiki
    Tanaka, Shu
    Togawa, Nozomu
    2019 IEEE 9TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE-BERLIN), 2019, : 64 - 69
  • [46] Ising-CIM: A Reconfigurable and Scalable Compute Within Memory Analog Ising Accelerator for Solving Combinatorial Optimization Problems
    Xie, Shanshan
    Raman, Siddhartha Raman Sundara
    Ni, Can
    Wang, Meizhi
    Yang, Mengtian
    Kulkarni, Jaydeep P.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2022, 57 (11) : 3453 - 3465
  • [47] A CMOS Compatible Bistable Resistively-coupled Ising Machine-BRIM
    Zhang, Yiqiao
    Afoakwa, Richard
    Vengalam, Uday Kumar Reddy
    Huang, Michael
    Ignjatovic, Zeljko
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 1665 - 1669
  • [48] The Ising model studied using evolutionary approach
    Gwizdalla, TM
    MODERN PHYSICS LETTERS B, 2005, 19 (04): : 169 - 179
  • [49] Study of potential games using Ising interaction
    Tejasvi, U.
    Eithiraj, R. D.
    Balakrishnan, S.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2022, 20 (01)
  • [50] Test Structure of Bi-stable Spring towards TopoMEMS Ising Machine
    Mita, Yoshio
    Ezawa, Motohiko
    Tsuji, Keigo
    Lebrasseur, Eric
    Sawamura, Tomoki
    Tsuboi, Shinji
    Mizushima, Ayako
    Ochiai, Yukinori
    Higo, Akio
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON MICROELECTRONIC TEST STRUCTURES (ICMTS), 2022, : 161 - 164