Personalized Course Selection Optimization Using an Ising Machine

被引:0
|
作者
Ota, Takeru [1 ]
Fukada, Keisuke [1 ]
Togawa, Nozomu [1 ,2 ]
机构
[1] Waseda Univ, Dept Comp Sci & Commun Engn, Tokyo, Japan
[2] Quanmatic Inc, Tokyo, Japan
来源
2024 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING, QCE, VOL 2 | 2024年
关键词
combinatorial optimization problem; course selection problem; Ising machine; Ising model; QUBO;
D O I
10.1109/QCE60285.2024.10340
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Many students spend a lot of time and effort manually selecting courses, due to the large number of candidate courses offered by universities. We regard course selection as a combinatorial optimization problem and define it as an NP hard problem. In this paper, we propose a QUBO (Quadratic Unconstrained Binary Optimization) formulation for solving the course selection problem, and solve the problem with an Ising machine. Experimental evaluations demonstrate that for the instance with the largest number of courses, our approach solves a personalized course selection problem 20X times faster than the conventional simulated annealing.
引用
收藏
页码:430 / 431
页数:2
相关论文
共 50 条
  • [21] Oscillatory Neural Network-Based Ising Machine Using 2D Memristors
    Chen, Xi
    Yang, Dongliang
    Hwang, Geunwoo
    Dong, Yujiao
    Cui, Binbin
    Wang, Dingchen
    Chen, Hegan
    Lin, Ning
    Zhang, Wenqi
    Li, Huihan
    Shao, Ruiwen
    Lin, Peng
    Hong, Heemyoung
    Yao, Yugui
    Sun, Linfeng
    Wang, Zhongrui
    Yang, Heejun
    ACS NANO, 2024, 18 (16) : 10758 - 10767
  • [22] Ising Model Simulation using Parametric Resonant Circuit
    Ichihara Y.
    Tsuda N.
    Goshima K.
    IEEJ Transactions on Electronics, Information and Systems, 2023, 143 (04) : 475 - 479
  • [23] BRIM: Bistable Resistively-Coupled Ising Machine
    Afoakwa, Richard
    Zhang, Yiqiao
    Vengalam, Uday Kumar Reddy
    Ignjatovic, Zeljko
    Huang, Michael
    2021 27TH IEEE INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COMPUTER ARCHITECTURE (HPCA 2021), 2021, : 749 - 760
  • [24] The accuracy of restricted Boltzmann machine models of Ising systems
    Yevick, David
    Melko, Roger
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 258
  • [25] Universal quantum computer and Ising machine: Recent developments
    Saito S.
    Kawabata S.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2019, 85 (12): : 1040 - 1043
  • [26] A Computing System for Supporting Application Development Using Ising Machines
    Miyahara K.
    Teramoto J.
    NTT Technical Review, 2023, 21 (11): : 23 - 28
  • [27] Objective Bayesian Edge Screening and Structure Selection for Ising Networks
    Marsman, M.
    Huth, K.
    Waldorp, L. J.
    Ntzoufras, I.
    PSYCHOMETRIKA, 2022, 87 (01) : 47 - 82
  • [28] Objective Bayesian Edge Screening and Structure Selection for Ising Networks
    M. Marsman
    K. Huth
    L. J. Waldorp
    I. Ntzoufras
    Psychometrika, 2022, 87 : 47 - 82
  • [29] Triangular approximation for Ising model and its application to Boltzmann machine
    Yasuda, Muneki
    Horiguchi, Tsuyoshi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 368 (01) : 83 - 95
  • [30] Increasing Ising Machine Capacity with Multi-Chip Architectures
    Sharma, Anshujit
    Afoakwa, Richard
    Ignjatovic, Zeljko
    Huang, Michael
    PROCEEDINGS OF THE 2022 THE 49TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA '22), 2022, : 508 - 521