共 14 条
Dynamics of the Infinite Discrete Nonlinear Schrödinger Equation
被引:0
作者:
Vuoksenmaa, Aleksis
[1
]
机构:
[1] Univ Helsinki, Dept Math & Stat, POB 68, Helsinki 00014, Finland
关键词:
Discrete nonlinear Schr & ouml;
dinger equation;
Nonlinear Schr & ouml;
Invariant measures;
STATISTICAL-MECHANICS;
SCHRODINGER-EQUATION;
INVARIANT-MEASURES;
DERIVATION;
D O I:
10.1007/s10955-024-03374-w
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
The discrete nonlinear Schr & ouml;dinger equation on Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Z}<^>d$$\end{document}, d >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 1$$\end{document} is an example of a dispersive nonlinear wave system. Being a Hamiltonian system that conserves also the & ell;2(Zd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell <^>2({\mathbb Z}<^>d)$$\end{document}-norm, the well-posedness of the corresponding Cauchy problem follows for square-summable initial data. In this paper, we prove that the well-posedness continues to hold for initial data that can grow towards infinity, namely anything that has at most a certain power law growth far away from the origin. The growth condition is loose enough to guarantee that, at least in dimension d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document}, initial data sampled from any reasonable equilibrium distribution of the defocusing DNLS satisfies it almost surely.
引用
收藏
页数:20
相关论文