Dynamics of the Infinite Discrete Nonlinear Schrödinger Equation

被引:0
作者
Vuoksenmaa, Aleksis [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68, Helsinki 00014, Finland
关键词
Discrete nonlinear Schr & ouml; dinger equation; Nonlinear Schr & ouml; Invariant measures; STATISTICAL-MECHANICS; SCHRODINGER-EQUATION; INVARIANT-MEASURES; DERIVATION;
D O I
10.1007/s10955-024-03374-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The discrete nonlinear Schr & ouml;dinger equation on Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Z}<^>d$$\end{document}, d >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 1$$\end{document} is an example of a dispersive nonlinear wave system. Being a Hamiltonian system that conserves also the & ell;2(Zd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell <^>2({\mathbb Z}<^>d)$$\end{document}-norm, the well-posedness of the corresponding Cauchy problem follows for square-summable initial data. In this paper, we prove that the well-posedness continues to hold for initial data that can grow towards infinity, namely anything that has at most a certain power law growth far away from the origin. The growth condition is loose enough to guarantee that, at least in dimension d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document}, initial data sampled from any reasonable equilibrium distribution of the defocusing DNLS satisfies it almost surely.
引用
收藏
页数:20
相关论文
共 14 条
[1]   Invariant measures for the 2D-defocusing nonlinear Schrodinger equation [J].
Bourgain, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 176 (02) :421-445
[2]   Invariant measures for NLS in infinite volume [J].
Bourgain, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (03) :605-620
[3]   Statistical mechanics of the 2-dimensional focusing nonlinear Schrodinger equation [J].
Brydges, DC ;
Slade, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 182 (02) :485-504
[4]   On the propagation of a perturbation in an anharmonic system [J].
Butta, Paolo ;
Caglioti, Emanuele ;
Di Ruzza, Sara ;
Marchioro, Carlo .
JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (02) :313-325
[5]   Dynamics of Infinite Classical Anharmonic Crystals [J].
Butta, Paolo ;
Marchioro, Carlo .
JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (03) :680-692
[6]   Probabilistic methods for discrete nonlinear Schrodinger equations [J].
Chatterjee, Sourav ;
Kirkpatrick, Kay .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (05) :727-757
[7]   The Nonlinear Schrodinger Equation on Z and R with Bounded Initial Data: Examples and Conjectures [J].
Dodson, Benjamin ;
Soffer, Avraham ;
Spencer, Thomas .
JOURNAL OF STATISTICAL PHYSICS, 2020, 180 (1-6) :910-934
[8]   Derivation of the cubic non-linear Schrodinger equation from quantum dynamics of many-body systems [J].
Erdos, Laszlo ;
Schlein, Benjamin ;
Yau, Horng-Tzer .
INVENTIONES MATHEMATICAE, 2007, 167 (03) :515-614
[9]   STRONG CONVERGENCE FOR DISCRETE NONLINEAR SCHRODINGER EQUATIONS IN THE CONTINUUM LIMIT [J].
Hong, Younghun ;
Yang, Changhun .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (02) :1297-1320
[10]   On the Continuum Limit for Discrete NLS with Long-Range Lattice Interactions [J].
Kirkpatrick, Kay ;
Lenzmann, Enno ;
Staffilani, Gigliola .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 317 (03) :563-591