Microscopic theory of spin Nernst effect

被引:1
作者
Fujimoto, Junji [1 ]
Matsushita, Taiki [2 ,3 ]
Ogata, Masao [4 ,5 ]
机构
[1] Saitama Univ, Dept Elect Engn Elect & Appl Phys, Saitama 3388570, Japan
[2] Kyoto Univ, Grad Sch Sci, Dept Phys, Kyoto 6068502, Japan
[3] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[4] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan
[5] Univ Tokyo, Transscale Quantum Sci Inst, Bunkyo Ku, Tokyo 1130033, Japan
关键词
D O I
10.1103/PhysRevB.110.174411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present the microscopic theory of the spin Nernst effect, which is a transverse spin current directly induced by a temperature gradient, employing the linear response theory with Luttinger's gravitational potential method. We consider a generic, noninteracting electron system with randomly distributed impurities and evaluate the spin current response to the gravitational potential. Our theory takes into account a contribution of the local equilibrium current modified by Luttinger's gravitational potential and is thus consistent with the thermodynamic principle that thermal responses should vanish at absolute zero. The Ward-Takahashi identities ensure that the spin Nernst current is well-behaved at low temperatures in any order of the random impurity potentials. Furthermore, we microscopically derive the spin-current version of Mott's formula, which associates the spin Nernst coefficient with the spin Hall conductivity. The spin-current version of the Streda formula is also discussed. To demonstrate these findings, the spin Nernst current of three-dimensional Dirac electrons is computed. Our theory is general and can therefore be extended to interacting electron systems, where Mott's formula no longer holds.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Phenomenological Spin Transport Theory Driven by Anomalous Nernst Effect
    Taniguchi, Tomohiro
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (07)
  • [2] SPIN CALORITRONICS Spin Nernst effect
    Prando, Giacomo
    NATURE NANOTECHNOLOGY, 2017, 12 (12) : 1115 - 1115
  • [3] Spin accumulation in the spin Nernst effect
    Shitade, Atsuo
    PHYSICAL REVIEW B, 2022, 106 (04)
  • [4] Observation of the spin Nernst effect
    Meyer S.
    Chen Y.-T.
    Wimmer S.
    Althammer M.
    Wimmer T.
    Schlitz R.
    Geprags S.
    Huebl H.
    Kodderitzsch D.
    Ebert H.
    Bauer G.E.W.
    Gross R.
    Goennenwein S.T.B.
    1600, Nature Publishing Group (16): : 97 - 981
  • [5] The spin Nernst effect in tungsten
    Sheng, Peng
    Sakuraba, Yuya
    Lau, Yong-Chang
    Takahashi, Saburo
    Mitani, Seiji
    Hayashi, Masamitsu
    SCIENCE ADVANCES, 2017, 3 (11):
  • [6] Observation of the spin Nernst effect
    S. Meyer
    Y.-T. Chen
    S. Wimmer
    M. Althammer
    T. Wimmer
    R. Schlitz
    S. Geprägs
    H. Huebl
    D. Ködderitzsch
    H. Ebert
    G. E. W. Bauer
    R. Gross
    S. T. B. Goennenwein
    Nature Materials, 2017, 16 : 977 - 981
  • [7] Observation of the spin Nernst effect
    Meyer, S.
    Chen, Y. -T.
    Wimmer, S.
    Althammer, M.
    Wimmer, T.
    Schlitz, R.
    Gepraegs, S.
    Huebl, H.
    Koedderitzsch, D.
    Ebert, H.
    Bauer, G. E. W.
    Gross, R.
    Goennenwein, S. T. B.
    NATURE MATERIALS, 2017, 16 (10) : 977 - +
  • [8] Microscopic Theory of Spin Seebeck Effect in Antiferromagnets
    Masuda, Keisuke
    Sato, Masahiro
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2024, 93 (03)
  • [9] Spin Nernst effect and Nernst effect in two-dimensional electron systems
    Cheng, Shu-guang
    Xing, Yanxia
    Sun, Qing-feng
    Xie, X. C.
    PHYSICAL REVIEW B, 2008, 78 (04):
  • [10] Spin splitting Nernst effect in altermagnets
    Yi, Xing-Jian
    Mao, Yue
    Lu, Xiancong
    Sun, Qing-Feng
    PHYSICAL REVIEW B, 2025, 111 (03)