Hodge-Tate stacks and non-abelian p-adic Hodge theory of v-perfect complexes on rigid spaces

被引:0
作者
Anschuetz, Johannes [1 ]
Heuer, Ben [2 ]
Le Bras, Arthur-Cesar [3 ]
机构
[1] Rhein Friedrich Wilhelms Univ Bonn, Math Inst, Bonn, Germany
[2] Goethe Univ Frankfurt, Inst Math, Frankfurt, Germany
[3] Univ Strasbourg, Inst Rech Math Avancee, Strasbourg, France
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2025年 / 2025卷 / 820期
关键词
SIMPSON;
D O I
10.1515/crelle-2024-0097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a quasi-compact quasi-separated p-adic formal scheme that is smooth either over a perfectoid Z p-algebra or over some ring of integers of a p-adic field. We construct a fully faithful functor from perfect complexes on the Hodge-Tate stack of X up to isogeny to perfect complexes on the v-site of the generic fibre of X. Moreover, we describe perfect complexes on the Hodge-Tate stack in terms of certain derived categories of Higgs and Higgs-Sen modules. This leads to a derived p-adic Simpson functor.
引用
收藏
页码:235 / 305
页数:71
相关论文
共 42 条
  • [31] Rigidity and a Riemann-Hilbert correspondence for p-adic local systems
    Liu, Ruochuan
    Zhu, Xinwen
    [J]. INVENTIONES MATHEMATICAE, 2017, 207 (01) : 291 - 343
  • [32] Lurie J., 2018, PREPRINT
  • [33] Min Y, 2023, Arxiv, DOI arXiv:2112.10140
  • [34] Min Y, 2024, Arxiv, DOI arXiv:2201.08030
  • [35] Nonabelian Hodge theory in characteristic p
    Ogus, A.
    Vologodsky, V.
    [J]. PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 106, 2007, 106 (106): : 1 - 138
  • [36] A note on Sen's theory in the imperfect residue field case
    Ohkubo, Shun
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (1-2) : 261 - 280
  • [37] p-ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES
    Scholze, Peter
    [J]. FORUM OF MATHEMATICS PI, 2013, 1
  • [38] Perfectoid Spaces
    Scholze, Peter
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2012, (116): : 245 - 313
  • [39] Finiteness and duality for the cohomology of prismatic crystals
    Tian, Yichao
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (800): : 217 - 257
  • [40] Notes on the local p-adic Simpson correspondence
    Tsuji, Takeshi
    [J]. MATHEMATISCHE ANNALEN, 2018, 371 (1-2) : 795 - 881