Hodge-Tate stacks and non-abelian p-adic Hodge theory of v-perfect complexes on rigid spaces

被引:0
作者
Anschuetz, Johannes [1 ]
Heuer, Ben [2 ]
Le Bras, Arthur-Cesar [3 ]
机构
[1] Rhein Friedrich Wilhelms Univ Bonn, Math Inst, Bonn, Germany
[2] Goethe Univ Frankfurt, Inst Math, Frankfurt, Germany
[3] Univ Strasbourg, Inst Rech Math Avancee, Strasbourg, France
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2025年 / 2025卷 / 820期
关键词
SIMPSON;
D O I
10.1515/crelle-2024-0097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a quasi-compact quasi-separated p-adic formal scheme that is smooth either over a perfectoid Z p-algebra or over some ring of integers of a p-adic field. We construct a fully faithful functor from perfect complexes on the Hodge-Tate stack of X up to isogeny to perfect complexes on the v-site of the generic fibre of X. Moreover, we describe perfect complexes on the Hodge-Tate stack in terms of certain derived categories of Higgs and Higgs-Sen modules. This leads to a derived p-adic Simpson functor.
引用
收藏
页码:235 / 305
页数:71
相关论文
共 42 条
  • [1] Abbes A., 2016, The -adic Simpson correspondence
  • [2] André Y, 2018, PUBL MATH-PARIS, V127, P71, DOI 10.1007/s10240-017-0097-9
  • [3] Andreychev G, 2021, Arxiv, DOI arXiv:2105.12591
  • [4] [Anonymous], 1990, The Grothendieck Festschrift, vol. III
  • [5] [Anonymous], WEBSITE
  • [6] Anschtz J., 2021, PREPRINT
  • [7] Anschuetz J, 2023, Arxiv, DOI arXiv:2312.07554
  • [8] Anschütz J, 2022, Arxiv, DOI arXiv:2211.08470
  • [9] BERTHELOT P., 1978, Notes on crystalline cohomology
  • [10] Bhatt B., 2022, PREPRINT