Performance constraints of high temperature polymer electrolyte membrane fuel cells by varying the Pt/C ratio of the catalyst

被引:0
|
作者
Martin, Santiago [1 ]
Garcia-Ybarra, Pedro L. [1 ]
Castillo, Jose L. [1 ]
机构
[1] Univ Nacl Educ Distancia UNED, Fac Ciencias, Dept Fis Matemat & Fluidos, Av Esparta S-N, Las Rozas De Madrid 28232, Madrid, Spain
来源
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE | 2024年 / 19卷 / 12期
关键词
Optimum catalyst loading; Pt/C ratio; wt% Pt/C; Catalyst layer; HT-PEMFC; PROTON-EXCHANGE MEMBRANE; GAS-DIFFUSION ELECTRODE; ULTRA-LOW; LAYER; CATHODE; NAFION; PAPER;
D O I
10.1016/j.ijoes.2024.100857
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electrodes prepared from catalysts with Pt weight percentages on the carbon support (Pt/C nanoparticles) ranging from 10 up to 60 wt% are used as cathodes of membrane electrode assemblies (MEAs) and tested in high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). For each Pt/C percentage in the catalyst, the cathode Pt-loading (which become proportional to the thickness of the electrode formed by the catalyst nanoparticles) is stepwise scanned from low to high loadings. Results show that when the Pt load increases, the MEA performance (measured by its power density at 0.6 V) rises initially (due to the increase in the number of active sites in the cathode) up to a maximum value limited by the mass transport of oxygen, associated to an optimum Pt-loading (different for each Pt/C ratio). Noteworthy, the peak performance is significantly different depending on the catalyst used (60 > 40 >> 20 > 10 wt% Pt/C), a fact that restricts the catalyst choice according to the performance required by the application. Furthermore, higher amounts of Pt in the cathode lead to a large catalyst waste as the FC performance even decreases as the cathode thickness increases.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Organic Additives to Improve Catalyst Performance for High-Temperature Polymer Electrolyte Membrane Fuel Cells
    Delikaya, Oeznur
    Zeyat, Mohammad
    Lentz, Dieter
    Roth, Christina
    CHEMELECTROCHEM, 2019, 6 (15) : 3892 - 3900
  • [2] To improve the high temperature polymer electrolyte membrane fuel cells performance by altering the properties of catalyst layer
    Sasiwimonrit, Krerkkiat
    Chang, Wei-Chin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (28) : 14491 - 14499
  • [3] Effect of catalyst layer microstructures on performance and stability for high temperature polymer electrolyte membrane fuel cells
    Zhang, Jujia
    Wang, Haining
    Li, Wen
    Zhang, Jin
    Lu, Di
    Yan, Wenrui
    Xiang, Yan
    Lu, Shanfu
    JOURNAL OF POWER SOURCES, 2021, 505
  • [4] Temperature Influence on the Synthesis of Pt/C Catalysts for Polymer Electrolyte Membrane Fuel Cells
    Kim, Gayoung
    Lee, Dong-Hyun
    Park, Gyungse
    Sun, Ho-Jung
    Kim, In-Tae
    Park, Sehkyu
    Rim, Hyung-Ryul
    Lee, Hong-Ki
    Shim, Joongpyo
    CATALYSTS, 2024, 14 (09)
  • [5] Catalyst, Membrane, Free Electrolyte Challenges, and Pathways to Resolutions in High Temperature Polymer Electrolyte Membrane Fuel Cells
    Myles, Timothy
    Bonville, Leonard
    Maric, Radenka
    CATALYSTS, 2017, 7 (01)
  • [6] The influence of impurities in high temperature polymer electrolyte membrane fuel cells performance
    Boaventura, Marta
    Alves, Isabel
    Ribeirinha, Paulo
    Mendes, Adelio
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (43) : 19771 - 19780
  • [7] Performance enhancement of high-temperature polymer electrolyte membrane fuel cells using Pt pulse electrodeposition
    Kim, Don Kwon
    Kim, Hoyoung
    Park, Hyanjoo
    Oh, SeonHwa
    Ahn, Sang Hyun
    Kim, Hyoung-Juhn
    Kim, Soo-Kil
    JOURNAL OF POWER SOURCES, 2019, 438
  • [8] Pt-supported C-MnO2 as a catalyst for polymer electrolyte membrane fuel cells
    Lu, Lu
    Xu, Hongfeng
    Shi, Jicheng
    Zhu, Shaomin
    Zhao, Hong
    Wang, Guoxiang
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2018, 48 (07) : 801 - 810
  • [9] Pt-supported C–MnO2 as a catalyst for polymer electrolyte membrane fuel cells
    Lu Lu
    Hongfeng Xu
    Jicheng Shi
    Shaomin Zhu
    Hong Zhao
    Guoxiang Wang
    Journal of Applied Electrochemistry, 2018, 48 : 801 - 810
  • [10] Preparation of Pt/C Catalyst by Coaxial Arc Plasma Deposition for Polymer Electrolyte Membrane Fuel Cells
    Agawa, Yoshiaki
    Kunimatsu, Masayuki
    Ito, Takeshi
    Kuwahara, Yasutaka
    Yamashita, Hiromi
    ECS ELECTROCHEMISTRY LETTERS, 2015, 4 (10) : F57 - F60