On Eigenvalue Multiplicities of Self-Adjoint Regular Sturm-Liouville Operators

被引:0
作者
Gesztesy, Fritz [1 ]
Nichols, Roger [2 ]
Zinchenko, Maxim [3 ]
机构
[1] Baylor Univ, Dept Math, Sid Richardson Bldg,1410 S 4th St, Waco, TX 76706 USA
[2] Univ Tennessee, Dept Math, Dept 6956, 615 McCallie Ave, Chattanooga, TN 37403 USA
[3] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
关键词
Sturm-Liouville operators; eigenvalue multiplicities;
D O I
10.15407/mag20.04.04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a complete discussion of multiplicities of eigenvalues of all self-adjoint regular Sturm-Liouville problems on compact intervals [a, b] subset of R.
引用
收藏
页码:461 / 478
页数:18
相关论文
共 16 条
  • [1] Regular and singular Sturm-Liouville problems with coupled boundary conditions
    Bailey, PB
    Everitt, WN
    Zettl, A
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 : 505 - 514
  • [2] Brown B.M., 2013, Operator Th.: Adv. Appls., V230
  • [3] Coddington E.A., 1985, Theory of Ordinary Differential Equations
  • [4] Eastham M. S. P., 1973, The spectral theory of periodic differential equations
  • [5] Frymark D., 2023, J. Differential Equations, V363, P391
  • [6] Gesztesy F., STURM LIOUVILLE OPER
  • [7] Gesztesy F., 1995, Differential Equations and Mathematical Physics, P67
  • [8] Kong Q, 2004, J COMPUT APPL MATH, V171, P291, DOI 10.1016/j.cam.2004.01.036
  • [9] Locker J., 2000, Math. Surv. Monographs, V73
  • [10] Naimark M.A., 1967, Linear Partial Differential Operators Part I. Elementary Theory of Linear Differential Operators