On the exactness of groupoid crossed products

被引:0
作者
Gao, Changyuan [1 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
关键词
Exactness; The approximation property; Groupoids; Crossed products; FELL BUNDLES; ASTERISK-ALGEBRAS; EQUIVALENCE; AMENABILITY; NUCLEARITY; PROPERTY;
D O I
10.1007/s43034-025-00409-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (A,G,alpha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}},G,\alpha )$$\end{document} be a separable groupoid C & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>*$$\end{document}-dynamical system and C0(G(0),A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0(G<^>{(0)},{\mathcal {A}})$$\end{document} the C & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>*$$\end{document}-algebra of continuous sections that vanish at infinity. When (A,G,alpha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}},G,\alpha )$$\end{document} has the approximation property, we prove that the crossed product A & rtimes;alpha,rG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}\rtimes _{\alpha ,r}G$$\end{document} is exact if and only if C0(G(0),A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0(G<^>{(0)},{\mathcal {A}})$$\end{document} is exact. In particular, if G is topologically amenable and C0(G(0),A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0(G<^>{(0)},{\mathcal {A}})$$\end{document} is exact, then A & rtimes;alpha,rG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}\rtimes _{\alpha ,r}G$$\end{document} is exact.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] A NOTE ON CROSSED PRODUCTS OF ROTATION ALGEBRAS
    Bonicke, Christian
    Chakraborty, Sayan
    He, Zhuofeng
    Liao, Hung-Chang
    JOURNAL OF OPERATOR THEORY, 2021, 85 (02) : 391 - 402
  • [42] Morita equivalence of certain crossed products
    Castano, Adriana Mejia
    CATEGORIES AND GENERAL ALGEBRAIC STRUCTURES WITH APPLICATIONS, 2023, 19 (01) : 103 - 125
  • [43] Commutativity and ideals in category crossed products
    Oinert, Johan
    Lundstrom, Patrik
    PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2010, 59 (04) : 338 - 346
  • [44] Residually finite actions and crossed products
    Kerr, David
    Nowak, Piotr W.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 : 1585 - 1614
  • [45] CROSSED PRODUCTS OF CERTAIN C*-ALGEBRAS
    Hua, Jiajie
    Wu, Yan
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (02)
  • [46] Strongly prime and *-prime crossed products
    Bohra, Nisha
    Joshi, Kanchan
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2016, 57 (03): : 561 - 571
  • [47] Products in Hochschild cohomology and Grothendieck rings of group crossed products
    Witherspoon, SJ
    ADVANCES IN MATHEMATICS, 2004, 185 (01) : 136 - 158
  • [48] CROSSED PRODUCTS OF DUAL OPERATOR SPACES AND A CHARACTERIZATION OF GROUPS WITH THE APPROXIMATION PROPERTY
    Andreou, Dimitrios
    JOURNAL OF OPERATOR THEORY, 2023, 89 (02) : 521 - 570
  • [49] ESSENTIAL CROSSED PRODUCTS FOR INVERSE SEMIGROUP ACTIONS: SIMPLICITY AND PURE INFINITENESS
    Kwaniewski, Bartosz Kosma
    Meyer, Ralf
    DOCUMENTA MATHEMATICA, 2021, 26 : 271 - 335
  • [50] Exactness of locally compact groups
    Brodzki, Jacek
    Cave, Chris
    Li, Kang
    ADVANCES IN MATHEMATICS, 2017, 312 : 209 - 233