On the exactness of groupoid crossed products

被引:0
作者
Gao, Changyuan [1 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
关键词
Exactness; The approximation property; Groupoids; Crossed products; FELL BUNDLES; ASTERISK-ALGEBRAS; EQUIVALENCE; AMENABILITY; NUCLEARITY; PROPERTY;
D O I
10.1007/s43034-025-00409-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (A,G,alpha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}},G,\alpha )$$\end{document} be a separable groupoid C & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>*$$\end{document}-dynamical system and C0(G(0),A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0(G<^>{(0)},{\mathcal {A}})$$\end{document} the C & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>*$$\end{document}-algebra of continuous sections that vanish at infinity. When (A,G,alpha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}},G,\alpha )$$\end{document} has the approximation property, we prove that the crossed product A & rtimes;alpha,rG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}\rtimes _{\alpha ,r}G$$\end{document} is exact if and only if C0(G(0),A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0(G<^>{(0)},{\mathcal {A}})$$\end{document} is exact. In particular, if G is topologically amenable and C0(G(0),A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0(G<^>{(0)},{\mathcal {A}})$$\end{document} is exact, then A & rtimes;alpha,rG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}\rtimes _{\alpha ,r}G$$\end{document} is exact.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] ON NUCLEARITY OF SEMIGROUP CROSSED PRODUCTS
    Meng, Qing
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (02) : 529 - 539
  • [32] Analytic partial crossed products
    Donsig, AP
    Hopenwasser, A
    HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (02): : 495 - 527
  • [33] The Haagerup property for twisted groupoid dynamical systems
    Kwasniewski, Bartosz K.
    Li, Kang
    Skalski, Adam
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (01)
  • [34] THE BRAUER SEMIGROUP OF A GROUPOID AND A SYMMETRIC IMPRIMITIVITY THEOREM
    Brown, Jonathan Henry
    Goehle, Geoff
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (04) : 1943 - 1972
  • [35] GAUGE-EQUIVARIANT HILBERT BIMODULES AND CROSSED PRODUCTS BY ENDOMORPHISMS
    Vasselli, Ezio
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (11) : 1363 - 1396
  • [36] K-theory of certain purely infinite crossed products
    Elliott, George A.
    Sierakowski, Adam
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (01) : 409 - 430
  • [37] Ideal structure and pure infiniteness of inverse semigroup crossed products
    Kwasniewski, Bartosz Kosma
    Meyer, Ralf
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2023, 17 (03) : 999 - 1043
  • [38] Theory of braided Hopf crossed products
    Guccione, JA
    Guccione, JJ
    JOURNAL OF ALGEBRA, 2003, 261 (01) : 54 - 101
  • [39] ON ABELIAN UNITARY INVOLUTIONS OF CROSSED PRODUCTS
    Yanchevskii, Vyacheslav I.
    DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2024, 68 (01): : 15 - 17
  • [40] On the Azumaya locus of some crossed products
    Carvalho, PAAB
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (01) : 51 - 72