On the exactness of groupoid crossed products

被引:0
|
作者
Gao, Changyuan [1 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
关键词
Exactness; The approximation property; Groupoids; Crossed products; FELL BUNDLES; ASTERISK-ALGEBRAS; EQUIVALENCE; AMENABILITY; NUCLEARITY; PROPERTY;
D O I
10.1007/s43034-025-00409-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (A,G,alpha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}},G,\alpha )$$\end{document} be a separable groupoid C & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>*$$\end{document}-dynamical system and C0(G(0),A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0(G<^>{(0)},{\mathcal {A}})$$\end{document} the C & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>*$$\end{document}-algebra of continuous sections that vanish at infinity. When (A,G,alpha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}},G,\alpha )$$\end{document} has the approximation property, we prove that the crossed product A & rtimes;alpha,rG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}\rtimes _{\alpha ,r}G$$\end{document} is exact if and only if C0(G(0),A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0(G<^>{(0)},{\mathcal {A}})$$\end{document} is exact. In particular, if G is topologically amenable and C0(G(0),A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0(G<^>{(0)},{\mathcal {A}})$$\end{document} is exact, then A & rtimes;alpha,rG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}\rtimes _{\alpha ,r}G$$\end{document} is exact.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Fourier Series and Twisted C*-Crossed Products
    Bedos, Erik
    Conti, Roberto
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (01) : 32 - 75
  • [22] Injectivity, crossed products, and amenable group actions
    Buss, Alcides
    Echterhoff, Siegfried
    Willett, Rufus
    K-THEORY IN ALGEBRA, ANALYSIS AND TOPOLOGY, 2020, 749 : 105 - 137
  • [23] Cyclic homology of Brzezinski's crossed products and of braided Hopf crossed products
    Carboni, Graciela
    Guccione, Jorge A.
    Guccione, Juan J.
    Valqui, Christian
    ADVANCES IN MATHEMATICS, 2012, 231 (06) : 3502 - 3568
  • [24] DUAL SKEW PRODUCTS, GENERICITY OF THE EXACTNESS PROPERTY AND FINANCE
    Kowalski, Zbigniew S.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (02): : 545 - 550
  • [25] Crossed products for actions of crossed modules on C*-algebras
    Buss, Alcides
    Meyer, Ralf
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2017, 11 (03) : 1195 - 1235
  • [26] Rokhlin dimension: duality, tracial properties, and crossed products
    Gardella, Eusebio
    Hirshberg, Ilan
    Santiago, Luis
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (02) : 408 - 460
  • [27] Crossed products of C*-algebras by groupoids and inverse semigroups
    Khoshkam, M
    Skandalis, G
    JOURNAL OF OPERATOR THEORY, 2004, 51 (02) : 255 - 279
  • [28] Nil ideals of crossed products
    Dimitrova, JM
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (09) : 4445 - 4453
  • [29] CROSSED PRODUCTS AND MF ALGEBRAS
    Li, Weihua
    Orfanos, Stefanos
    OPERATORS AND MATRICES, 2016, 10 (03): : 679 - 689
  • [30] Crossed Products and Coding Theory
    Ginosar, Yuval
    Moreno, Aviram Rochas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (10) : 6224 - 6233