On the exactness of groupoid crossed products

被引:0
作者
Gao, Changyuan [1 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
关键词
Exactness; The approximation property; Groupoids; Crossed products; FELL BUNDLES; ASTERISK-ALGEBRAS; EQUIVALENCE; AMENABILITY; NUCLEARITY; PROPERTY;
D O I
10.1007/s43034-025-00409-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (A,G,alpha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}},G,\alpha )$$\end{document} be a separable groupoid C & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>*$$\end{document}-dynamical system and C0(G(0),A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0(G<^>{(0)},{\mathcal {A}})$$\end{document} the C & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>*$$\end{document}-algebra of continuous sections that vanish at infinity. When (A,G,alpha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}},G,\alpha )$$\end{document} has the approximation property, we prove that the crossed product A & rtimes;alpha,rG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}\rtimes _{\alpha ,r}G$$\end{document} is exact if and only if C0(G(0),A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0(G<^>{(0)},{\mathcal {A}})$$\end{document} is exact. In particular, if G is topologically amenable and C0(G(0),A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0(G<^>{(0)},{\mathcal {A}})$$\end{document} is exact, then A & rtimes;alpha,rG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}\rtimes _{\alpha ,r}G$$\end{document} is exact.
引用
收藏
页数:17
相关论文
共 24 条
[1]   Amenability and exactness for dynamical systems and their C*-algebras [J].
Anantharaman-Delaroche, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (10) :4153-4178
[2]  
Anantharaman-Delaroche C., 2000, Monografie de l'Enseignement Mathematique, V36
[3]  
Anantharaman-Delaroche C, 2023, Arxiv, DOI arXiv:2306.17613
[4]  
[Anonymous], 2007, Crossed Products of C*-algebras
[5]  
Bdos E., 2012, Mnster J. Math, V5, P183
[6]   Fourier Series and Twisted C*-Crossed Products [J].
Bedos, Erik ;
Conti, Roberto .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (01) :32-75
[7]  
Blackadar B., 2006, -algebras and von Neumann Algebras. III. Operator Algebras and Non-commutative Geometry
[8]  
Brown NP., 2008, -algebras and Finite-Dimensional Approximations. Graduate Studies in Mathematics, V88
[9]   A property for locally convex *-algebras related to property (T) and character amenability [J].
Chen, Xiao ;
Lau, Anthony To-Ming ;
Ng, Chi-Keung .
STUDIA MATHEMATICA, 2015, 227 (03) :259-286
[10]   Approximation property of C*-algebraic bundles [J].
Exel, R ;
Ng, CK .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2002, 132 :509-522