On the exactness of groupoid crossed products

被引:0
|
作者
Gao, Changyuan [1 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
关键词
Exactness; The approximation property; Groupoids; Crossed products; FELL BUNDLES; ASTERISK-ALGEBRAS; EQUIVALENCE; AMENABILITY; NUCLEARITY; PROPERTY;
D O I
10.1007/s43034-025-00409-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (A,G,alpha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}},G,\alpha )$$\end{document} be a separable groupoid C & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>*$$\end{document}-dynamical system and C0(G(0),A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0(G<^>{(0)},{\mathcal {A}})$$\end{document} the C & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>*$$\end{document}-algebra of continuous sections that vanish at infinity. When (A,G,alpha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}},G,\alpha )$$\end{document} has the approximation property, we prove that the crossed product A & rtimes;alpha,rG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}\rtimes _{\alpha ,r}G$$\end{document} is exact if and only if C0(G(0),A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0(G<^>{(0)},{\mathcal {A}})$$\end{document} is exact. In particular, if G is topologically amenable and C0(G(0),A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0(G<^>{(0)},{\mathcal {A}})$$\end{document} is exact, then A & rtimes;alpha,rG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}\rtimes _{\alpha ,r}G$$\end{document} is exact.
引用
收藏
页数:17
相关论文
共 50 条