SOFIA Polarization Spectrum of Three Star-forming Clouds

被引:0
作者
Cox, Erin G. [1 ]
Novak, Giles [1 ,2 ]
Chuss, David T. [3 ]
Lee, Dennis [1 ,2 ]
Berthoud, Marc [1 ,4 ]
Karpovich, Kaitlyn [3 ]
Michail, Joseph M. [1 ,2 ,5 ]
Li, Zhi-Yun [6 ]
Ashton, Peter C. [7 ]
机构
[1] Northwestern Univ, Ctr Interdisciplinary Explorat & Res Astron CIERA, 1800 Sherman Ave, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA
[3] Villanova Univ, Dept Phys, 800 E Lancaster Ave, Villanova, PA 19085 USA
[4] Univ Chicago, Engn Techn Support Grp, Chicago, IL 60637 USA
[5] Ctr Astrophys Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02138 USA
[6] Univ Virginia, Dept Astron, POB 400325,530 McCormick Rd, Charlottesville, VA 22904 USA
[7] SRI Int, 333 Ravenswood Ave, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
FAR-INFRARED EMISSION; SUBMILLIMETER POLARIZATION; RADIATIVE TORQUES; MAGNETIC-FIELDS; GRAIN ALIGNMENT; PROTOPLANETARY DISKS; MOLECULAR CLOUDS; GALACTIC CLOUDS; DUST; CORE;
D O I
10.3847/1538-4357/ada447
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The dust emission polarization spectrum-how the polarization percentage changes with wavelength-serves as a probe of dust grain properties in star-forming regions. In this paper, we present 89-214 mu m polarization spectrum measurements obtained from SOFIA/HAWC+ for three star-forming clouds: OMC1, M17, and W3. We find that all three clouds have an overall decreasing polarization percentage with increasing wavelength (i.e., a "falling polarization spectrum"). We use SOFIA and Herschel data to create column density and temperature maps for each cloud. We fit for the slope of the polarization spectrum at each sky position in each cloud, and using the Pearson r coefficient, we probe each cloud for possible correlations of slope with column density and slope with temperature. We also create plots of slope versus column density and slope versus temperature for each cloud. For the case of OMC1, our results are consistent with those presented by J. Michail et al., who carried out a similar analysis for that cloud. Our plots of polarization spectrum slope versus column density reveal that for each cloud there exists a critical column density below which a falling polarization spectrum is not observed. For these more diffuse sight lines, the polarization spectrum is instead flat or slightly rising. This finding is consistent with a hypothesis presented 25 yr ago in a paper led by R. Hildebrand based on Kuiper Airborne Observatory data. This hypothesis is that regions shielded from near-IR radiation are required to produce a sharply falling polarization spectrum.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Star-forming Filament Models
    Myers, Philip C.
    ASTROPHYSICAL JOURNAL, 2017, 838 (01)
  • [32] TADPOL: A 1.3 mm SURVEY OF DUST POLARIZATION IN STAR-FORMING CORES AND REGIONS
    Hull, Charles L. H.
    Plambeck, Richard L.
    Kwon, Woojin
    Bower, Geoffrey C.
    Carpenter, John M.
    Crutcher, Richard M.
    Fiege, Jason D.
    Franzmann, Erica
    Hakobian, Nicholas S.
    Heiles, Carl
    Houde, Martin
    Hughes, A. Meredith
    Lamb, James W.
    Looney, Leslie W.
    Marrone, Daniel P.
    Matthews, Brenda C.
    Pillai, Thushara
    Pound, Marc W.
    Rahman, Nurur
    Sandell, Goeran
    Stephens, Ian W.
    Tobin, John J.
    Vaillancourt, John E.
    Volgenau, N. H.
    Wright, Melvyn C. H.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2014, 213 (01)
  • [33] Different modes of star formation - II. Gas accretion phase of initially subcritical star-forming clouds
    Machida, Masahiro N.
    Basu, Shantanu
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 494 (01) : 827 - 845
  • [34] Probing the magnetic fields of massive star-forming regions with methanol maser polarization
    Dodson, R.
    Moriarty, C. D.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 421 (03) : 2395 - 2406
  • [35] Magnetic fields in star-forming regions: Theoretical aspects
    Galli, D
    ASTROPHYSICS AND SPACE SCIENCE, 2005, 295 (1-2) : 43 - 51
  • [36] THE IRAS 08589-4714 STAR-FORMING REGION
    Saldano, H. P.
    Vasquez, J.
    Gomez, M.
    Cappa, C. E.
    Duronea, N.
    Rubio, M.
    REVISTA MEXICANA DE ASTRONOMIA Y ASTROFISICA, 2017, 53 (01) : 3 - 16
  • [37] Magnetic Fields in Star-Forming Regions: Theoretical Aspects
    Daniele Galli
    Astrophysics and Space Science, 2005, 295 : 43 - 51
  • [38] EVN observations of 6.7 GHz methanol maser polarization in massive star-forming regions
    Surcis, G.
    Vlemmings, W. H. T.
    van Langevelde, H. J.
    Kramer, B. Hutawarakorn
    ASTRONOMY & ASTROPHYSICS, 2012, 541
  • [39] AMMONIA THERMOMETRY OF STAR-FORMING GALAXIES
    Mangum, Jeffrey G.
    Darling, Jeremy
    Henkel, Christian
    Menten, Karl M.
    MacGregor, Meredith
    Svoboda, Brian E.
    Schinnerer, Eva
    ASTROPHYSICAL JOURNAL, 2013, 779 (01)
  • [40] EVN observations of 6.7 GHz methanol maser polarization in massive star-forming regions
    Surcis, G.
    Vlemmings, W. H. T.
    van Langevelde, H. J.
    Kramer, B. Hutawarakorn
    Bartkiewicz, A.
    Blasi, M. G.
    ASTRONOMY & ASTROPHYSICS, 2015, 578