Exemplar-Free Continual Representation Learning via Learnable Drift Compensation

被引:0
|
作者
Gomez-Villa, Alex [1 ,2 ]
Goswami, Dipam [1 ,2 ]
Wang, Kai [1 ]
Bagdanov, Andrew D. [4 ]
Twardowski, Bartlomiej [1 ,2 ,3 ]
van de Weijer, Joost [1 ,2 ]
机构
[1] Comp Vis Ctr, Barcelona, Spain
[2] Univ Autonoma Barcelona, Barcelona, Spain
[3] IDEAS NCBR, Warsaw, Poland
[4] Univ Florence, MICC, Florence, Italy
来源
COMPUTER VISION-ECCV 2024, PT VII | 2025年 / 15065卷
关键词
Continual Learning; Semi-Supervised Learning; Self-Supervised Learning; Exemplar-Free Class Incremental Learning;
D O I
10.1007/978-3-031-72667-5_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Exemplar-free class-incremental learning using a backbone trained from scratch and starting from a small first task presents a significant challenge for continual representation learning. Prototype-based approaches, when continually updated, face the critical issue of semantic drift due to which the old class prototypes drift to different positions in the new feature space. Through an analysis of prototype-based continual learning, we show that forgetting is not due to diminished discriminative power of the feature extractor, and can potentially be corrected by drift compensation. To address this, we propose Learnable Drift Compensation (LDC), which can effectively mitigate drift in any moving backbone, whether supervised or unsupervised. LDC is fast and straightforward to integrate on top of existing continual learning approaches. Furthermore, we showcase how LDC can be applied in combination with self-supervised CL methods, resulting in the first exemplar-free semi-supervised continual learning approach. We achieve state-of-the-art performance in both supervised and semi-supervised settings across multiple datasets. Code is available at https://github.com/alviur/ldc.
引用
收藏
页码:473 / 490
页数:18
相关论文
共 11 条
  • [1] EXEMPLAR-FREE ONLINE CONTINUAL LEARNING
    He, Jiangpeng
    Zhu, Fengqing
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 541 - 545
  • [2] Exemplar-Free Continual Learning of Vision Transformers via Gated Class-Attention and Cascaded Feature Drift Compensation
    Cotogni, Marco
    Yang, Fei
    Cusano, Claudio
    Bagdanov, Andrew D.
    van de Weijer, Joost
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, : 4571 - 4589
  • [3] FedINC: An Exemplar-Free Continual Federated Learning Framework with Small Labeled Data
    Deng, Yongheng
    Yue, Sheng
    Wang, Tuowei
    Wang, Guanbo
    Ren, Ju
    Zhang, Yaoxue
    PROCEEDINGS OF THE 21ST ACM CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS, SENSYS 2023, 2023, : 56 - 69
  • [4] Online Analytic Exemplar-Free Continual Learning With Large Models for Imbalanced Autonomous Driving Task
    Zhuang, Huiping
    Fang, Di
    Tong, Kai
    Liu, Yuchen
    Zeng, Ziqian
    Zhou, Xu
    Chen, Cen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (02) : 1949 - 1958
  • [5] Adaptive Knowledge Matching for Exemplar-Free Class-Incremental Learning
    Chen, Runhang
    Jing, Xiao-Yuan
    Chen, Haowen
    PATTERN RECOGNITION AND COMPUTER VISION, PT III, PRCV 2024, 2025, 15033 : 289 - 303
  • [6] FRMM: Feature Reprojection for Exemplar-Free Class-Incremental Learning
    Wang, Hao
    Chen, Jing
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14864 : 251 - 263
  • [7] Exemplar-Based Continual Learning via Contrastive Learning
    Chen S.
    Zhang M.
    Zhang J.
    Huang K.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (07): : 3313 - 3324
  • [8] Exemplar-free class incremental learning via discriminative and comparable parallel one-class classifiers
    Sun, Wenju
    Li, Qingyong
    Zhang, Jing
    Wang, Danyu
    Wang, Wen
    Geng, YangLi-ao
    PATTERN RECOGNITION, 2023, 140
  • [9] Less confidence, less forgetting: Learning with a humbler teacher in exemplar-free Class-Incremental learning
    Gao, Zijian
    Xu, Kele
    Zhuang, Huiping
    Liu, Li
    Mao, Xinjun
    Ding, Bo
    Feng, Dawei
    Wang, Huaimin
    NEURAL NETWORKS, 2024, 179
  • [10] Continual Representation Learning via Auto-Weighted Latent Embeddings on Person ReID
    Huang, Tianjun
    Qu, Weiwei
    Zhang, Jianguo
    PATTERN RECOGNITION AND COMPUTER VISION,, PT III, 2021, 13021 : 593 - 605